Vildagliptin: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
David Canner (talk | contribs)
No edit summary
David Canner (talk | contribs)
No edit summary
Line 10: Line 10:


===Mechanism of Action===
===Mechanism of Action===
Dipeptidyl Peptidase-4 (DPP-4) is an antigenic membrane serine exopeptidase that cleaves proline dipeptides form the N-terminal end of protein substrates. DPP-4 plays a major role in [[Carbohydrate Metabolism|glucose metabolism]] as it is responsible for the degradation of incretins, most notably Glucagon-like peptide-1 (GLP-1) and Glucose-dependent insulinotropic polypeptide (GIp). Incretins are a group of gastrointestinal hormones that stimulate insulin biosynthesis and inhibit glucagon secretion after consuming high glucose meals. Since [[Diabetes]] is typically caused by a deficiency in [[insulin]] secretion or by increased hepatic glucose production, preventing incretin degradation is a viable treatment for diabetics. Vildagliptin is a competitive inhibitor of DPP-4. By inhibiting DPP-4 and subsequently preventing the enzymatic degradation of GLP-1 and GIP, these incretins are able to potentiate the secretion of insulin and suppress the release of glucagon by the pancreas, resulting in controlled blood-glucose levels.<ref>PMID:17073841</ref> Although no crystal structure of Vildagliptin bound DPP-4 has been solved, it is believed to bind in a similar fashion to  
Dipeptidyl Peptidase-4 (DPP-4) is an antigenic membrane serine exopeptidase that cleaves proline dipeptides form the N-terminal end of protein substrates. DPP-4 plays a major role in [[Carbohydrate Metabolism|glucose metabolism]] as it is responsible for the degradation of incretins, most notably Glucagon-like peptide-1 (GLP-1) and Glucose-dependent insulinotropic polypeptide (GIp). Incretins are a group of gastrointestinal hormones that stimulate insulin biosynthesis and inhibit glucagon secretion after consuming high glucose meals. Since [[Diabetes]] is typically caused by a deficiency in [[insulin]] secretion or by increased hepatic glucose production, preventing incretin degradation is a viable treatment for diabetics. Vildagliptin is a competitive inhibitor of DPP-4. By inhibiting DPP-4 and subsequently preventing the enzymatic degradation of GLP-1 and GIP, these incretins are able to potentiate the secretion of insulin and suppress the release of glucagon by the pancreas, resulting in controlled blood-glucose levels.<ref>PMID:17073841</ref> Although no crystal structure of Vildagliptin bound DPP-4 has been solved, it is believed to bind in a similar fashion to [[Sitagliptin]] and [[Saxagliptin]]
 
The active site of DPP-4 consists of a <scene name='Sitagliptin/Hdryo/1'>hydrophobic "S1" pocket</scene> and several <scene name='Sitagliptin/Hbond/2'>hydrogen bonding residues</scene>, ideal for binding terminal dipeptides. <scene name='Sitagliptin/Bound/3'>Sitagliptin binds to the active site of DPP-4</scene> with great specificity (DPP-4 [[Pharmacokinetics#Inhibitory_Concentration_.28IC50.29|IC<sub>50</sub>]]: 18 nM vs. >50,000 nM for other DPPs), situating its trifluorophenyl moiety within the S1 hydrophobic pocket, forming four hydrogen bond interactions with residues Tyr 662, Glu 205, & Glu 206, and burying its trifluoro group within a a very tight pocket formed by residues Ser 209 and Arg 358.<ref>PMID:15634008</ref>


===Pharmacokinetics===
===Pharmacokinetics===

Revision as of 15:52, 13 December 2010

Vildagliptin, better known as Galvus, ([[___]])

Drag the structure with the mouse to rotate

Better Known as: Galvus

  • Marketed By:
  • Major Indication:
  • Drug Class:
  • Date of FDA Approval (Patent Expiration):
  • 2009 Sales:
  • Importance:
  • See Pharmaceutical Drugs for more information about other drugs and diseases.

Mechanism of Action

Dipeptidyl Peptidase-4 (DPP-4) is an antigenic membrane serine exopeptidase that cleaves proline dipeptides form the N-terminal end of protein substrates. DPP-4 plays a major role in glucose metabolism as it is responsible for the degradation of incretins, most notably Glucagon-like peptide-1 (GLP-1) and Glucose-dependent insulinotropic polypeptide (GIp). Incretins are a group of gastrointestinal hormones that stimulate insulin biosynthesis and inhibit glucagon secretion after consuming high glucose meals. Since Diabetes is typically caused by a deficiency in insulin secretion or by increased hepatic glucose production, preventing incretin degradation is a viable treatment for diabetics. Vildagliptin is a competitive inhibitor of DPP-4. By inhibiting DPP-4 and subsequently preventing the enzymatic degradation of GLP-1 and GIP, these incretins are able to potentiate the secretion of insulin and suppress the release of glucagon by the pancreas, resulting in controlled blood-glucose levels.[1] Although no crystal structure of Vildagliptin bound DPP-4 has been solved, it is believed to bind in a similar fashion to Sitagliptin and Saxagliptin

Pharmacokinetics

DPP4 Inhibitor Pharmacokinetics
Parameter Vildagliptin
(Galvus)
Sitagliptin
(Januvia)
Saxagliptin
(Onglyza)
Tmax (hr) 1.75 1-4 2
Cmax (ng/ml) 290 330 34
Bioavailability (%) 85 87 67
Protein Binding (%) 9 38 0
T1/2 (hr) 2-3 12.4 2.5
AUC (ng/ml/hr) 1610 3470 101
IC50 (nM) 3 18 50
Renal Clearance (L/h) 13.0 21.0 13.8
Volume Distribution (L) 71 198 151
Dosage (mg) 100 100 5
Metabolism Hydrolysis Hepatic (CYP3A4 & CYP2C8) Hepatic (CYP3A4)

For Pharmacokinetic Data References, see: References

References

  1. Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006 Nov;60(11):1454-70. PMID:17073841 doi:10.1111/j.1742-1241.2006.01178.x


Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

David Canner