Collagen Structure & Function: Difference between revisions
Line 11: | Line 11: | ||
The shape and structural properties of a native collagen molecule are established by its triple-helical domain(s). In classical collagen molecules a single triple-helical domain is observed to compose close to 95% of the molecule <ref>PMID: 19853297</ref>. However there are also other types of collagens that have been shown to comprise of multiple triple-helical domains which only account for a fraction of the molecules mass. | The shape and structural properties of a native collagen molecule are established by its triple-helical domain(s). In classical collagen molecules a single triple-helical domain is observed to compose close to 95% of the molecule <ref>PMID: 19853297</ref>. However there are also other types of collagens that have been shown to comprise of multiple triple-helical domains which only account for a fraction of the molecules mass. | ||
The triple-helical domain of collagens consist of three distinct α-chains. Each of these chains contain a characteristic L-handed amino acid sequence of polyproline, often termed as polyproline type II helix <ref>PMID: 19344236</ref>. The proper folding of each of these chains requires a glycine residue to be present in every third position of the polypeptide chain. For example, each α-chain is composed of multiple triplet sequences of of Gly-Y-Z in which Y and Z can be any amino acid. Y is commonly found as proline and Z as hydroxyproline. The presence of hydroxyproline in the Y position contributes to the stability of the helical form | The triple-helical domain of collagens consist of three distinct α-chains. Each of these chains contain a characteristic L-handed amino acid sequence of polyproline, often termed as polyproline type II helix <ref>PMID: 19344236</ref>. The proper folding of each of these chains requires a glycine residue to be present in every third position of the polypeptide chain. For example, each α-chain is composed of multiple triplet sequences of of Gly-Y-Z in which Y and Z can be any amino acid. Y is commonly found as proline and Z as hydroxyproline. The presence of hydroxyproline in the Y position contributes to the stability of the helical form. | ||