3a5o: Difference between revisions

New page: '''Unreleased structure''' The entry 3a5o is ON HOLD Authors: Murakami, K. Description: Crystal Structure of a Dictyostelium P109I Ca2+-Actin in Complex with Human Gelsolin Segment 1 ...
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 3a5o is ON HOLD
==Crystal Structure of a Dictyostelium P109I Ca2+-Actin in Complex with Human Gelsolin Segment 1==
<StructureSection load='3a5o' size='340' side='right'caption='[[3a5o]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3a5o]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Dictyostelium_discoideum Dictyostelium discoideum] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A5O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A5O FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=HIC:4-METHYL-HISTIDINE'>HIC</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a5o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a5o OCA], [https://pdbe.org/3a5o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a5o RCSB], [https://www.ebi.ac.uk/pdbsum/3a5o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a5o ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/GELS_HUMAN GELS_HUMAN] Defects in GSN are the cause of amyloidosis type 5 (AMYL5) [MIM:[https://omim.org/entry/105120 105120]; also known as familial amyloidosis Finnish type. AMYL5 is a hereditary generalized amyloidosis due to gelsolin amyloid deposition. It is typically characterized by cranial neuropathy and lattice corneal dystrophy. Most patients have modest involvement of internal organs, but severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.<ref>PMID:2157434</ref> <ref>PMID:2153578</ref> <ref>PMID:2176481</ref> <ref>PMID:1338910</ref>
== Function ==
[https://www.uniprot.org/uniprot/GELS_HUMAN GELS_HUMAN] Calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis.<ref>PMID:20393563</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some alpha-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.


Authors: Murakami, K.
Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release.,Murakami K, Yasunaga T, Noguchi TQ, Gomibuchi Y, Ngo KX, Uyeda TQ, Wakabayashi T Cell. 2010 Oct 15;143(2):275-87. PMID:20946985<ref>PMID:20946985</ref>


Description: Crystal Structure of a Dictyostelium P109I Ca2+-Actin in Complex with Human Gelsolin Segment 1
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3a5o" style="background-color:#fffaf0;"></div>


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Aug 19 12:25:27 2009''
==See Also==
*[[Actin 3D structures|Actin 3D structures]]
*[[Gelsolin 3D structures|Gelsolin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Dictyostelium discoideum]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Murakami K]]
[[Category: Noguchi TQ]]
[[Category: Uyeda TQ]]
[[Category: Wakabayashi T]]
[[Category: Yasunaga T]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA