3i3h: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal structure of Bothropstoxin-I crystallized at 291K== | ||
<StructureSection load='3i3h' size='340' side='right'caption='[[3i3h]], [[Resolution|resolution]] 2.17Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3i3h]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bothrops_jararacussu Bothrops jararacussu]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I3H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3I3H FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.17Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3i3h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3i3h OCA], [https://pdbe.org/3i3h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3i3h RCSB], [https://www.ebi.ac.uk/pdbsum/3i3h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3i3h ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PA2H1_BOTJR PA2H1_BOTJR] Snake venom phospholipase A2 homolog that lacks enzymatic activity. Shows local myotoxic activity (PubMed:11018293, PubMed:12079495, PubMed:31906173). Induces inflammation, since it induces edema and leukocytes infiltration (PubMed:11018293, PubMed:31906173). In addition, it induces NLRP3 NLRP3, ASC (PYCARD), caspase-1 (CASP1), and IL-1beta (IL1B) gene expression in the gastrocnemius muscle, showing that it is able to activate NLRP3 inflammasome (PubMed:31906173). It also damages artificial and myoblast membranes by a calcium-independent mechanism, has bactericidal activity, and induces neuromuscular blockade (PubMed:27531710). A model of myotoxic mechanism has been proposed: an apo Lys49-PLA2 is activated by the entrance of a hydrophobic molecule (e.g. fatty acid) at the hydrophobic channel of the protein leading to a reorientation of a monomer (By similarity) (PubMed:27531710). This reorientation causes a transition between 'inactive' to 'active' states, causing alignment of C-terminal and membrane-docking sites (MDoS) side-by-side and putting the membrane-disruption sites (MDiS) in the same plane, exposed to solvent and in a symmetric position for both monomers (By similarity) (PubMed:27531710). The MDoS region stabilizes the toxin on membrane by the interaction of charged residues with phospholipid head groups (By similarity) (PubMed:27531710). Subsequently, the MDiS region destabilizes the membrane with penetration of hydrophobic residues (By similarity) (PubMed:27531710). This insertion causes a disorganization of the membrane, allowing an uncontrolled influx of ions (i.e. calcium and sodium), and eventually triggering irreversible intracellular alterations and cell death (By similarity) (PubMed:27531710).[UniProtKB:I6L8L6]<ref>PMID:11018293</ref> <ref>PMID:11829743</ref> <ref>PMID:12079495</ref> <ref>PMID:17157889</ref> <ref>PMID:17346668</ref> <ref>PMID:18160090</ref> <ref>PMID:27531710</ref> <ref>PMID:3176051</ref> <ref>PMID:31906173</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i3/3i3h_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3i3h ConSurf]. | |||
<div style="clear:both"></div> | |||
==See Also== | |||
*[[Phospholipase A2 3D structures|Phospholipase A2 3D structures]] | |||
*[[Phospholipase A2 homolog|Phospholipase A2 homolog]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bothrops jararacussu]] | |||
[[Category: Large Structures]] | |||
[[Category: Fontes MRM]] | |||
[[Category: Marchi-Salvador DP]] | |||
[[Category: Salvador GHM]] | |||
[[Category: Soares AM]] |
Latest revision as of 12:59, 6 November 2024
Crystal structure of Bothropstoxin-I crystallized at 291KCrystal structure of Bothropstoxin-I crystallized at 291K
Structural highlights
FunctionPA2H1_BOTJR Snake venom phospholipase A2 homolog that lacks enzymatic activity. Shows local myotoxic activity (PubMed:11018293, PubMed:12079495, PubMed:31906173). Induces inflammation, since it induces edema and leukocytes infiltration (PubMed:11018293, PubMed:31906173). In addition, it induces NLRP3 NLRP3, ASC (PYCARD), caspase-1 (CASP1), and IL-1beta (IL1B) gene expression in the gastrocnemius muscle, showing that it is able to activate NLRP3 inflammasome (PubMed:31906173). It also damages artificial and myoblast membranes by a calcium-independent mechanism, has bactericidal activity, and induces neuromuscular blockade (PubMed:27531710). A model of myotoxic mechanism has been proposed: an apo Lys49-PLA2 is activated by the entrance of a hydrophobic molecule (e.g. fatty acid) at the hydrophobic channel of the protein leading to a reorientation of a monomer (By similarity) (PubMed:27531710). This reorientation causes a transition between 'inactive' to 'active' states, causing alignment of C-terminal and membrane-docking sites (MDoS) side-by-side and putting the membrane-disruption sites (MDiS) in the same plane, exposed to solvent and in a symmetric position for both monomers (By similarity) (PubMed:27531710). The MDoS region stabilizes the toxin on membrane by the interaction of charged residues with phospholipid head groups (By similarity) (PubMed:27531710). Subsequently, the MDiS region destabilizes the membrane with penetration of hydrophobic residues (By similarity) (PubMed:27531710). This insertion causes a disorganization of the membrane, allowing an uncontrolled influx of ions (i.e. calcium and sodium), and eventually triggering irreversible intracellular alterations and cell death (By similarity) (PubMed:27531710).[UniProtKB:I6L8L6][1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|