2nyb: Difference between revisions
New page: left|200px<br /><applet load="2nyb" size="450" color="white" frame="true" align="right" spinBox="true" caption="2nyb, resolution 1.100Å" /> '''Crystal structure o... |
No edit summary |
||
(17 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of E.Coli Iron Superoxide Dismutase Q69E at 1.1 Angstrom resolution== | ||
The active site metal ion of superoxide dismutase (SOD) is reduced and | <StructureSection load='2nyb' size='340' side='right'caption='[[2nyb]], [[Resolution|resolution]] 1.10Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2nyb]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NYB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NYB FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.1Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=O:OXYGEN+ATOM'>O</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2nyb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nyb OCA], [https://pdbe.org/2nyb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2nyb RCSB], [https://www.ebi.ac.uk/pdbsum/2nyb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2nyb ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SODF_ECOLI SODF_ECOLI] Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ny/2nyb_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2nyb ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The active site metal ion of superoxide dismutase (SOD) is reduced and reoxidized as it disproportionates superoxide to dioxygen and hydrogen peroxide. Thus, the reduction midpoint potential (Em) is a critical determinant of catalytic activity. In E. coli Fe-containing SOD (FeSOD), reduction of Fe3+ is accompanied by protonation of a coordinated OH-, to produce Fe2+ coordinated by H2O. The coordinated solvent's only contact with the protein beyond the active site is a conserved Gln residue. Mutation of this Gln to His or Glu resulted in elevation of the Em by 220 mV and more than 660 mV, respectively [Yikilmaz et al., Biochemistry 2006, 45, 1151-1161], despite the fact that overall protein structure was preserved, His is a chemically conservative replacement for Gln, and neutral Glu is isostructural and isoelectronic with Gln. Therefore, we have investigated several possible bases for the elevated Em's, including altered Fe electronic structure, altered active site electrostatics, altered H-bonding and altered redox-coupled proton transfer. Using EPR, MCD, and NMR spectroscopies, we find that the active site electronic structures of the two mutants resemble that of the WT enzyme, for both oxidation states, and Q69E-FeSOD's apparent deviation from WT-like Fe3+ coordination in the oxidized state can be explained by increased affinity for a small anion. Spontaneous coordination of an exogenous anion can only stabilize oxidized Q69E-Fe3+SOD and, therefore, cannot account for the increased Em of Q69E FeSOD. WT-like anion binding affinities and active site pK's indicate that His69 of Q69H-FeSOD is neutral in both oxidation states, like Gln69 of WT-FeSOD, whereas Glu69 appears to be neutral in the oxidized state but ionized in the reduced state of Q69E-FeSOD. A 1.1 A resolution crystal structure of Q69E-Fe2+SOD indicates that Glu69 accepts a strong H-bond from coordinated solvent in the reduced state, in contrast to the case in WT-FeSOD where Gln69 donates an H-bond. These data and DFT calculations lead to the proposal that the elevated Em of Q69E-FeSOD can be substantially explained by (1) relief from enforced H-bond donation in the reduced state, (2) Glu69's capacity to provide a proton for proton-coupled Fe3+ reduction, and (3) strong hydrogen bond acceptance in the reduced state, which stabilizes coordinated H2O. Our results thus support the hypothesis that the protein matrix can apply significant redox tuning via its influence over redox-coupled proton transfer and the energy associated with it. | |||
How can a single second sphere amino acid substitution cause reduction midpoint potential changes of hundreds of millivolts?,Yikilmaz E, Porta J, Grove LE, Vahedi-Faridi A, Bronshteyn Y, Brunold TC, Borgstahl GE, Miller AF J Am Chem Soc. 2007 Aug 15;129(32):9927-40. Epub 2007 Jul 12. PMID:17628062<ref>PMID:17628062</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2nyb" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Superoxide dismutase 3D structures|Superoxide dismutase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Borgstahl GEO]] | |||
[[Category: Borgstahl | [[Category: Porta JC]] | ||
[[Category: Porta | [[Category: Vahedi-Faridi A]] | ||
[[Category: Vahedi-Faridi | |||
Latest revision as of 03:11, 28 December 2023
Crystal structure of E.Coli Iron Superoxide Dismutase Q69E at 1.1 Angstrom resolutionCrystal structure of E.Coli Iron Superoxide Dismutase Q69E at 1.1 Angstrom resolution
Structural highlights
FunctionSODF_ECOLI Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe active site metal ion of superoxide dismutase (SOD) is reduced and reoxidized as it disproportionates superoxide to dioxygen and hydrogen peroxide. Thus, the reduction midpoint potential (Em) is a critical determinant of catalytic activity. In E. coli Fe-containing SOD (FeSOD), reduction of Fe3+ is accompanied by protonation of a coordinated OH-, to produce Fe2+ coordinated by H2O. The coordinated solvent's only contact with the protein beyond the active site is a conserved Gln residue. Mutation of this Gln to His or Glu resulted in elevation of the Em by 220 mV and more than 660 mV, respectively [Yikilmaz et al., Biochemistry 2006, 45, 1151-1161], despite the fact that overall protein structure was preserved, His is a chemically conservative replacement for Gln, and neutral Glu is isostructural and isoelectronic with Gln. Therefore, we have investigated several possible bases for the elevated Em's, including altered Fe electronic structure, altered active site electrostatics, altered H-bonding and altered redox-coupled proton transfer. Using EPR, MCD, and NMR spectroscopies, we find that the active site electronic structures of the two mutants resemble that of the WT enzyme, for both oxidation states, and Q69E-FeSOD's apparent deviation from WT-like Fe3+ coordination in the oxidized state can be explained by increased affinity for a small anion. Spontaneous coordination of an exogenous anion can only stabilize oxidized Q69E-Fe3+SOD and, therefore, cannot account for the increased Em of Q69E FeSOD. WT-like anion binding affinities and active site pK's indicate that His69 of Q69H-FeSOD is neutral in both oxidation states, like Gln69 of WT-FeSOD, whereas Glu69 appears to be neutral in the oxidized state but ionized in the reduced state of Q69E-FeSOD. A 1.1 A resolution crystal structure of Q69E-Fe2+SOD indicates that Glu69 accepts a strong H-bond from coordinated solvent in the reduced state, in contrast to the case in WT-FeSOD where Gln69 donates an H-bond. These data and DFT calculations lead to the proposal that the elevated Em of Q69E-FeSOD can be substantially explained by (1) relief from enforced H-bond donation in the reduced state, (2) Glu69's capacity to provide a proton for proton-coupled Fe3+ reduction, and (3) strong hydrogen bond acceptance in the reduced state, which stabilizes coordinated H2O. Our results thus support the hypothesis that the protein matrix can apply significant redox tuning via its influence over redox-coupled proton transfer and the energy associated with it. How can a single second sphere amino acid substitution cause reduction midpoint potential changes of hundreds of millivolts?,Yikilmaz E, Porta J, Grove LE, Vahedi-Faridi A, Bronshteyn Y, Brunold TC, Borgstahl GE, Miller AF J Am Chem Soc. 2007 Aug 15;129(32):9927-40. Epub 2007 Jul 12. PMID:17628062[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|