3d8v: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3d8v.jpg|left|200px]]


<!--
==Crystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-N-acetylglucosamine==
The line below this paragraph, containing "STRUCTURE_3d8v", creates the "Structure Box" on the page.
<StructureSection load='3d8v' size='340' side='right'caption='[[3d8v]], [[Resolution|resolution]] 2.55&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3d8v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3D8V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3D8V FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.55&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=UD1:URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE'>UD1</scene></td></tr>
{{STRUCTURE_3d8v|  PDB=3d8v  |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3d8v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3d8v OCA], [https://pdbe.org/3d8v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3d8v RCSB], [https://www.ebi.ac.uk/pdbsum/3d8v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3d8v ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GLMU_MYCTU GLMU_MYCTU] Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.<ref>PMID:19237750</ref> <ref>PMID:19121323</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d8/3d8v_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3d8v ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Antibiotic resistance is a major issue in the treatment of infectious diseases such as tuberculosis. Existing antibiotics target only a few cellular pathways and there is an urgent need for antibiotics that have novel molecular mechanisms. The glmU gene is essential in Mycobacterium tuberculosis, being required for optimal bacterial growth, and has been selected as a possible drug target for structural and functional investigation. GlmU is a bifunctional acetyltransferase/uridyltransferase that catalyses the formation of UDP-GlcNAc from GlcN-1-P. UDP-GlcNAc is a substrate for two important biosynthetic pathways: lipopolysaccharide and peptidoglycan synthesis. The crystal structure of M. tuberculosis GlmU has been determined in an unliganded form and in complex with GlcNAc-1-P or UDP-GlcNAc. The structures reveal the residues that are responsible for substrate binding. Enzyme activities were characterized by (1)H NMR and suggest that the presence of acetyl-coenzyme A has an inhibitory effect on uridyltransferase activity.


===Crystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-N-acetylglucosamine===
Structure and function of GlmU from Mycobacterium tuberculosis.,Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):275-83. Epub 2009, Feb 20. PMID:19237750<ref>PMID:19237750</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_19237750}}, adds the Publication Abstract to the page
<div class="pdbe-citations 3d8v" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 19237750 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_19237750}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
3D8V is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3D8V OCA].
 
==Reference==
<ref group="xtra">PMID:19237750</ref><references group="xtra"/>
[[Category: Mycobacterium tuberculosis]]
[[Category: Mycobacterium tuberculosis]]
[[Category: Baker, E N.]]
[[Category: Baker EN]]
[[Category: Squire, C J.]]
[[Category: Squire CJ]]
[[Category: Zhang, Z.]]
[[Category: Zhang Z]]
[[Category: Acyltransferase]]
[[Category: Cell shape]]
[[Category: Cell wall biogenesis/degradation]]
[[Category: Cytoplasm]]
[[Category: Magnesium]]
[[Category: Metal-binding]]
[[Category: Multifunctional enzyme]]
[[Category: Nucleotide-diphospho-sugar transferases/single-stranded left-handed beta-helix]]
[[Category: Nucleotidyltransferase]]
[[Category: Peptidoglycan synthesis]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Mar 11 11:18:05 2009''

Latest revision as of 15:42, 30 August 2023

Crystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-N-acetylglucosamineCrystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-N-acetylglucosamine

Structural highlights

3d8v is a 1 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.55Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GLMU_MYCTU Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Antibiotic resistance is a major issue in the treatment of infectious diseases such as tuberculosis. Existing antibiotics target only a few cellular pathways and there is an urgent need for antibiotics that have novel molecular mechanisms. The glmU gene is essential in Mycobacterium tuberculosis, being required for optimal bacterial growth, and has been selected as a possible drug target for structural and functional investigation. GlmU is a bifunctional acetyltransferase/uridyltransferase that catalyses the formation of UDP-GlcNAc from GlcN-1-P. UDP-GlcNAc is a substrate for two important biosynthetic pathways: lipopolysaccharide and peptidoglycan synthesis. The crystal structure of M. tuberculosis GlmU has been determined in an unliganded form and in complex with GlcNAc-1-P or UDP-GlcNAc. The structures reveal the residues that are responsible for substrate binding. Enzyme activities were characterized by (1)H NMR and suggest that the presence of acetyl-coenzyme A has an inhibitory effect on uridyltransferase activity.

Structure and function of GlmU from Mycobacterium tuberculosis.,Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):275-83. Epub 2009, Feb 20. PMID:19237750[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ. Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):275-83. Epub 2009, Feb 20. PMID:19237750 doi:10.1107/S0907444909001036
  2. Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol. 2009 Feb 20;386(2):451-64. Epub 2008 Dec 24. PMID:19121323 doi:10.1016/j.jmb.2008.12.031
  3. Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ. Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):275-83. Epub 2009, Feb 20. PMID:19237750 doi:10.1107/S0907444909001036

3d8v, resolution 2.55Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA