1oc0: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==plasminogen activator inhibitor-1 complex with somatomedin B domain of vitronectin== | ||
The | <StructureSection load='1oc0' size='340' side='right'caption='[[1oc0]], [[Resolution|resolution]] 2.28Å' scene=''> | ||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1oc0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OC0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1OC0 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.28Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1oc0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1oc0 OCA], [https://pdbe.org/1oc0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1oc0 RCSB], [https://www.ebi.ac.uk/pdbsum/1oc0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1oc0 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/PAI1_HUMAN PAI1_HUMAN] Defects in SERPINE1 are the cause of plasminogen activator inhibitor-1 deficiency (PAI-1D) [MIM:[https://omim.org/entry/613329 613329]. It is a hematologic disorder characterized by increased bleeding after trauma, injury, or surgery. Affected females have menorrhagia. The bleeding defect is due to increased fibrinolysis of fibrin blood clots due to deficiency of plasminogen activator inhibitor-1, which inhibits tissue and urinary activators of plasminogen.<ref>PMID:9207454</ref> Note=High concentrations of SERPINE1 seem to contribute to the development of venous but not arterial occlusions. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PAI1_HUMAN PAI1_HUMAN] Serine protease inhibitor. This inhibitor acts as 'bait' for tissue plasminogen activator, urokinase, protein C and matriptase-3/TMPRSS7. Its rapid interaction with PLAT may function as a major control point in the regulation of fibrinolysis.<ref>PMID:15853774</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oc/1oc0_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1oc0 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The interaction of the plasma protein vitronectin with plasminogen activator inhibitor-1 (PAI-1) is central to human health. Vitronectin binding extends the lifetime of active PAI-1, which controls hemostasis by inhibiting fibrinolysis and has also been implicated in angiogenesis. The PAI-1-vitronectin binding interaction also affects cell adhesion and motility. For these reasons, elevated PAI-1 activities are associated both with coronary thrombosis and with a poor prognosis in many cancers. Here we show the crystal structure at a resolution of 2.3 A of the complex of the somatomedin B domain of vitronectin with PAI-1. The structure of the complex explains how vitronectin binds to and stabilizes the active conformation of PAI-1. It also explains the tissue effects of PAI-1, as PAI-1 competes for and sterically blocks the interaction of vitronectin with cell surface receptors and integrins. Structural understanding of the essential biological roles of the interaction between PAI-1 and vitronectin opens the prospect of specifically designed blocking agents for the prevention of thrombosis and treatment of cancer. | |||
How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration.,Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ Nat Struct Biol. 2003 Jul;10(7):541-4. PMID:12808446<ref>PMID:12808446</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1oc0" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Plasminogen activator inhibitor|Plasminogen activator inhibitor]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Carrell RW]] | ||
[[Category: | [[Category: Huntington JA]] | ||
[[Category: | [[Category: Pannu NS]] | ||
[[Category: | [[Category: Read RJ]] | ||
[[Category: | [[Category: Zhou A]] | ||
Latest revision as of 10:32, 23 October 2024
plasminogen activator inhibitor-1 complex with somatomedin B domain of vitronectinplasminogen activator inhibitor-1 complex with somatomedin B domain of vitronectin
Structural highlights
DiseasePAI1_HUMAN Defects in SERPINE1 are the cause of plasminogen activator inhibitor-1 deficiency (PAI-1D) [MIM:613329. It is a hematologic disorder characterized by increased bleeding after trauma, injury, or surgery. Affected females have menorrhagia. The bleeding defect is due to increased fibrinolysis of fibrin blood clots due to deficiency of plasminogen activator inhibitor-1, which inhibits tissue and urinary activators of plasminogen.[1] Note=High concentrations of SERPINE1 seem to contribute to the development of venous but not arterial occlusions. FunctionPAI1_HUMAN Serine protease inhibitor. This inhibitor acts as 'bait' for tissue plasminogen activator, urokinase, protein C and matriptase-3/TMPRSS7. Its rapid interaction with PLAT may function as a major control point in the regulation of fibrinolysis.[2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe interaction of the plasma protein vitronectin with plasminogen activator inhibitor-1 (PAI-1) is central to human health. Vitronectin binding extends the lifetime of active PAI-1, which controls hemostasis by inhibiting fibrinolysis and has also been implicated in angiogenesis. The PAI-1-vitronectin binding interaction also affects cell adhesion and motility. For these reasons, elevated PAI-1 activities are associated both with coronary thrombosis and with a poor prognosis in many cancers. Here we show the crystal structure at a resolution of 2.3 A of the complex of the somatomedin B domain of vitronectin with PAI-1. The structure of the complex explains how vitronectin binds to and stabilizes the active conformation of PAI-1. It also explains the tissue effects of PAI-1, as PAI-1 competes for and sterically blocks the interaction of vitronectin with cell surface receptors and integrins. Structural understanding of the essential biological roles of the interaction between PAI-1 and vitronectin opens the prospect of specifically designed blocking agents for the prevention of thrombosis and treatment of cancer. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration.,Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ Nat Struct Biol. 2003 Jul;10(7):541-4. PMID:12808446[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|