2h1v: Difference between revisions
New page: left|200px<br /><applet load="2h1v" size="450" color="white" frame="true" align="right" spinBox="true" caption="2h1v, resolution 1.20Å" /> '''Crystal structure of... |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of the Lys87Ala mutant variant of Bacillus subtilis ferrochelatase== | ||
Ferrochelatase catalyzes the terminal step in the heme biosynthetic | <StructureSection load='2h1v' size='340' side='right'caption='[[2h1v]], [[Resolution|resolution]] 1.20Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2h1v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H1V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H1V FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h1v OCA], [https://pdbe.org/2h1v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h1v RCSB], [https://www.ebi.ac.uk/pdbsum/2h1v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h1v ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CPFC_BACSU CPFC_BACSU] Involved in coproporphyrin-dependent heme b biosynthesis (PubMed:25646457, PubMed:25908396). Catalyzes the insertion of ferrous iron into coproporphyrin III to form Fe-coproporphyrin III (PubMed:25646457, PubMed:25908396). It can also insert iron into protoporphyrin IX (PubMed:1459957, PubMed:8119288, PubMed:21052751, PubMed:25646457). Has weaker activity with 2,4 disulfonate, deuteroporphyrin and 2,4 hydroxyethyl (PubMed:25646457, PubMed:12761666). In vitro, can also use Zn(2+) or Cu(2+) (PubMed:8119288, PubMed:16140324, PubMed:21052751, PubMed:12761666).<ref>PMID:12761666</ref> <ref>PMID:1459957</ref> <ref>PMID:16140324</ref> <ref>PMID:21052751</ref> <ref>PMID:25646457</ref> <ref>PMID:25826316</ref> <ref>PMID:25908396</ref> <ref>PMID:8119288</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h1/2h1v_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2h1v ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Ferrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264. | |||
Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX.,Hansson MD, Karlberg T, Rahardja MA, Al-Karadaghi S, Hansson M Biochemistry. 2007 Jan 9;46(1):87-94. PMID:17198378<ref>PMID:17198378</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2h1v" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ferrochelatase 3D structures|Ferrochelatase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bacillus subtilis]] | [[Category: Bacillus subtilis]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Al-Karadaghi S]] | |||
[[Category: Al-Karadaghi | [[Category: Arys Rahardja M]] | ||
[[Category: | [[Category: Hansson M]] | ||
[[Category: Hansson | [[Category: Hansson MD]] | ||
[[Category: | [[Category: Karlberg T]] | ||
[[Category: | |||
Latest revision as of 12:50, 30 August 2023
Crystal structure of the Lys87Ala mutant variant of Bacillus subtilis ferrochelataseCrystal structure of the Lys87Ala mutant variant of Bacillus subtilis ferrochelatase
Structural highlights
FunctionCPFC_BACSU Involved in coproporphyrin-dependent heme b biosynthesis (PubMed:25646457, PubMed:25908396). Catalyzes the insertion of ferrous iron into coproporphyrin III to form Fe-coproporphyrin III (PubMed:25646457, PubMed:25908396). It can also insert iron into protoporphyrin IX (PubMed:1459957, PubMed:8119288, PubMed:21052751, PubMed:25646457). Has weaker activity with 2,4 disulfonate, deuteroporphyrin and 2,4 hydroxyethyl (PubMed:25646457, PubMed:12761666). In vitro, can also use Zn(2+) or Cu(2+) (PubMed:8119288, PubMed:16140324, PubMed:21052751, PubMed:12761666).[1] [2] [3] [4] [5] [6] [7] [8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFerrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264. Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX.,Hansson MD, Karlberg T, Rahardja MA, Al-Karadaghi S, Hansson M Biochemistry. 2007 Jan 9;46(1):87-94. PMID:17198378[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|