2hoa: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==STRUCTURE DETERMINATION OF THE ANTP(C39->S) HOMEODOMAIN FROM NUCLEAR MAGNETIC RESONANCE DATA IN SOLUTION USING A NOVEL STRATEGY FOR THE STRUCTURE CALCULATION WITH THE PROGRAMS DIANA, CALIBA, HABAS AND GLOMSA== | ||
<StructureSection load='2hoa' size='340' side='right'caption='[[2hoa]]' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2hoa]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HOA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HOA FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hoa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hoa OCA], [https://pdbe.org/2hoa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hoa RCSB], [https://www.ebi.ac.uk/pdbsum/2hoa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hoa ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q7KSY7_DROME Q7KSY7_DROME] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ho/2hoa_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hoa ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The structure of a mutant Antennapedia homeodomain, Antp(C39----S), from Drosophila melanogaster was determined using a set of new programs introduced in the accompanying paper. An input dataset of 957 distance constraints and 171 dihedral angle constraints was collected using two-dimensional n.m.r. experiments with the 15N-labeled protein. The resulting high quality structure for Antp(C39----S), with an average root-mean-square deviation of 0.53 A between the backbone atoms of residues 7 to 59 in 20 energy-refined distance geometry structures and the mean structure, is nearly identical to the previously reported structure of the wild-type Antp homeodomain. The only significant difference is in the connection between helices III and IV, which was found to be less kinked than was indicated by the structure determination for Antp. The main emphasis of the presentation in this paper is on a detailed account of the practical use of a novel strategy for the computation of nuclear magnetic resonance structures of proteins with the combined use of the programs DIANA, CALIBA, HABAS and GLOMSA. | |||
Structure determination of the Antp (C39----S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA.,Guntert P, Qian YQ, Otting G, Muller M, Gehring W, Wuthrich K J Mol Biol. 1991 Feb 5;217(3):531-40. PMID:1671604<ref>PMID:1671604</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2hoa" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Drosophila melanogaster]] | [[Category: Drosophila melanogaster]] | ||
[[Category: Gehring | [[Category: Large Structures]] | ||
[[Category: Guntert | [[Category: Gehring WJ]] | ||
[[Category: Muller | [[Category: Guntert P]] | ||
[[Category: Otting | [[Category: Muller M]] | ||
[[Category: Qian | [[Category: Otting G]] | ||
[[Category: Wuthrich | [[Category: Qian Y-Q]] | ||
[[Category: Wuthrich K]] | |||
Latest revision as of 22:02, 29 May 2024
STRUCTURE DETERMINATION OF THE ANTP(C39->S) HOMEODOMAIN FROM NUCLEAR MAGNETIC RESONANCE DATA IN SOLUTION USING A NOVEL STRATEGY FOR THE STRUCTURE CALCULATION WITH THE PROGRAMS DIANA, CALIBA, HABAS AND GLOMSASTRUCTURE DETERMINATION OF THE ANTP(C39->S) HOMEODOMAIN FROM NUCLEAR MAGNETIC RESONANCE DATA IN SOLUTION USING A NOVEL STRATEGY FOR THE STRUCTURE CALCULATION WITH THE PROGRAMS DIANA, CALIBA, HABAS AND GLOMSA
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structure of a mutant Antennapedia homeodomain, Antp(C39----S), from Drosophila melanogaster was determined using a set of new programs introduced in the accompanying paper. An input dataset of 957 distance constraints and 171 dihedral angle constraints was collected using two-dimensional n.m.r. experiments with the 15N-labeled protein. The resulting high quality structure for Antp(C39----S), with an average root-mean-square deviation of 0.53 A between the backbone atoms of residues 7 to 59 in 20 energy-refined distance geometry structures and the mean structure, is nearly identical to the previously reported structure of the wild-type Antp homeodomain. The only significant difference is in the connection between helices III and IV, which was found to be less kinked than was indicated by the structure determination for Antp. The main emphasis of the presentation in this paper is on a detailed account of the practical use of a novel strategy for the computation of nuclear magnetic resonance structures of proteins with the combined use of the programs DIANA, CALIBA, HABAS and GLOMSA. Structure determination of the Antp (C39----S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA.,Guntert P, Qian YQ, Otting G, Muller M, Gehring W, Wuthrich K J Mol Biol. 1991 Feb 5;217(3):531-40. PMID:1671604[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|