3d7c: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3d7c.png|left|200px]]


<!--
==Crystal structure of the bromodomain of human GCN5, the general control of amino-acid synthesis protein 5-like 2==
The line below this paragraph, containing "STRUCTURE_3d7c", creates the "Structure Box" on the page.
<StructureSection load='3d7c' size='340' side='right'caption='[[3d7c]], [[Resolution|resolution]] 2.06&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3d7c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3D7C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3D7C FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.06&#8491;</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3d7c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3d7c OCA], [https://pdbe.org/3d7c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3d7c RCSB], [https://www.ebi.ac.uk/pdbsum/3d7c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3d7c ProSAT]</span></td></tr>
{{STRUCTURE_3d7c|  PDB=3d7c  |  SCENE=  }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/KAT2A_HUMAN KAT2A_HUMAN] Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Acetylation of histones gives a specific tag for epigenetic transcription activation. Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles. Also acetylates non-histone proteins, such as CEBPB (PubMed:17301242). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes.<ref>PMID:17301242</ref> <ref>PMID:19103755</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d7/3d7c_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3d7c ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Bromodomains (BRDs) are protein interaction modules that specifically recognize epsilon-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


===Crystal structure of the bromodomain of human GCN5, the general control of amino-acid synthesis protein 5-like 2===
Histone recognition and large-scale structural analysis of the human bromodomain family.,Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S Cell. 2012 Mar 30;149(1):214-31. PMID:22464331<ref>PMID:22464331</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3d7c" style="background-color:#fffaf0;"></div>


==About this Structure==
==See Also==
3D7C is a 2 chains structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3D7C OCA].
*[[Histone acetyltransferase 3D structures|Histone acetyltransferase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Arrowsmith, C H.]]
[[Category: Large Structures]]
[[Category: Bountra, C.]]
[[Category: Arrowsmith CH]]
[[Category: Delft, F von.]]
[[Category: Bountra C]]
[[Category: Edwards, A M.]]
[[Category: Edwards AM]]
[[Category: Eswaran, J.]]
[[Category: Eswaran J]]
[[Category: Fedorov, O.]]
[[Category: Fedorov O]]
[[Category: Filippakopoulos, P.]]
[[Category: Filippakopoulos P]]
[[Category: Knapp, S.]]
[[Category: Knapp S]]
[[Category: Murray, J.]]
[[Category: Murray J]]
[[Category: Picaud, S.]]
[[Category: Picaud S]]
[[Category: SGC, Structural Genomics Consortium.]]
[[Category: Von Delft F]]
[[Category: Alternative splicing]]
[[Category: Amino-acid synthesis]]
[[Category: Biosynthetic protein]]
[[Category: Bromodomain]]
[[Category: Gcn5]]
[[Category: Host-virus interaction]]
[[Category: Nucleus]]
[[Category: Phosphoprotein]]
[[Category: Sgc]]
[[Category: Structural genomics consortium]]
[[Category: Transcription]]
[[Category: Transcription regulation]]
[[Category: Transferase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 08:38:06 2009''

Latest revision as of 15:42, 30 August 2023

Crystal structure of the bromodomain of human GCN5, the general control of amino-acid synthesis protein 5-like 2Crystal structure of the bromodomain of human GCN5, the general control of amino-acid synthesis protein 5-like 2

Structural highlights

3d7c is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.06Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAT2A_HUMAN Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Acetylation of histones gives a specific tag for epigenetic transcription activation. Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles. Also acetylates non-histone proteins, such as CEBPB (PubMed:17301242). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Bromodomains (BRDs) are protein interaction modules that specifically recognize epsilon-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.

Histone recognition and large-scale structural analysis of the human bromodomain family.,Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S Cell. 2012 Mar 30;149(1):214-31. PMID:22464331[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2703-8. Epub 2007 Feb 14. PMID:17301242 doi:http://dx.doi.org/10.1073/pnas.0607378104
  2. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  3. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012 Mar 30;149(1):214-31. PMID:22464331 doi:10.1016/j.cell.2012.02.013

3d7c, resolution 2.06Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA