2b75: Difference between revisions

New page: left|200px<br /><applet load="2b75" size="450" color="white" frame="true" align="right" spinBox="true" caption="2b75, resolution 2.10Å" /> '''T4 Lysozyme mutant L...
 
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2b75.gif|left|200px]]<br /><applet load="2b75" size="450" color="white" frame="true" align="right" spinBox="true"
caption="2b75, resolution 2.10&Aring;" />
'''T4 Lysozyme mutant L99A at 150 MPa'''<br />


==Overview==
==T4 Lysozyme mutant L99A at 150 MPa==
Formation of a water-expelling nonpolar core is the paradigm of protein, folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of, some proteins. Hydration of the protein core has also been suggested as, the mechanism of pressure-induced unfolding. We therefore are led to ask, whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an, approximately 160-A(3), highly hydrophobic cavity created by mutation in, T4 lysozyme by using high-pressure crystallography and molecular dynamics, simulation. We show that application of modest pressure causes, approximately four water molecules to enter the cavity while the protein, itself remains essentially unchanged. The highly cooperative filling is, primarily due to a small change in bulk water activity, which implies that, changing solvent conditions or, equivalently, cavity polarity can, dramatically affect interior hydration of proteins and thereby influence, both protein activity and folding.
<StructureSection load='2b75' size='340' side='right'caption='[[2b75]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2b75]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B75 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B75 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b75 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b75 OCA], [https://pdbe.org/2b75 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b75 RCSB], [https://www.ebi.ac.uk/pdbsum/2b75 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b75 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b7/2b75_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2b75 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an approximately 160-A(3), highly hydrophobic cavity created by mutation in T4 lysozyme by using high-pressure crystallography and molecular dynamics simulation. We show that application of modest pressure causes approximately four water molecules to enter the cavity while the protein itself remains essentially unchanged. The highly cooperative filling is primarily due to a small change in bulk water activity, which implies that changing solvent conditions or, equivalently, cavity polarity can dramatically affect interior hydration of proteins and thereby influence both protein activity and folding.


==About this Structure==
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.,Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. Epub 2005 Nov 3. PMID:16269539<ref>PMID:16269539</ref>
2B75 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Bacteriophage_t4 Bacteriophage t4] with CL and BME as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=2B75 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation., Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM, Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. Epub 2005 Nov 3. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16269539 16269539]
</div>
[[Category: Bacteriophage t4]]
<div class="pdbe-citations 2b75" style="background-color:#fffaf0;"></div>
[[Category: Lysozyme]]
[[Category: Single protein]]
[[Category: Collins, M.D.]]
[[Category: Gruner, S.M.]]
[[Category: Matthews, B.W.]]
[[Category: Quillin, M.L.]]
[[Category: BME]]
[[Category: CL]]
[[Category: cavity]]
[[Category: high pressure]]
[[Category: t4 lysozyme]]


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Wed Nov 21 08:36:48 2007''
==See Also==
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia virus T4]]
[[Category: Large Structures]]
[[Category: Collins MD]]
[[Category: Gruner SM]]
[[Category: Matthews BW]]
[[Category: Quillin ML]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA