1vh0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: left|200px<br /><applet load="1vh0" size="450" color="white" frame="true" align="right" spinBox="true" caption="1vh0, resolution 2.31Å" /> '''Crystal structure of...
 
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1vh0.gif|left|200px]]<br /><applet load="1vh0" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1vh0, resolution 2.31&Aring;" />
'''Crystal structure of a hypothetical protein'''<br />


==Overview==
==Crystal structure of a hypothetical protein==
The targets of the Structural GenomiX (SGX) bacterial genomics project, were proteins conserved in multiple prokaryotic organisms with no obvious, sequence homolog in the Protein Data Bank of known structures. The outcome, of this work was 80 structures, covering 60 unique sequences and 49, different genes. Experimental phase determination from proteins, incorporating Se-Met was carried out for 45 structures with most of the, remainder solved by molecular replacement using members of the, experimentally phased set as search models. An automated tool was, developed to deposit these structures in the Protein Data Bank, along with, the associated X-ray diffraction data (including refined experimental, phases) and experimentally confirmed sequences. BLAST comparisons of the, SGX structures with structures that had appeared in the Protein Data Bank, over the intervening 3.5 years since the SGX target list had been compiled, identified homologs for 49 of the 60 unique sequences represented by the, SGX structures. This result indicates that, for bacterial structures that, are relatively easy to express, purify, and crystallize, the structural, coverage of gene space is proceeding rapidly. More distant, sequence-structure relationships between the SGX and PDB structures were, investigated using PDB-BLAST and Combinatorial Extension (CE). Only one, structure, SufD, has a truly unique topology compared to all folds in the, PDB.
<StructureSection load='1vh0' size='340' side='right'caption='[[1vh0]], [[Resolution|resolution]] 2.31&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1vh0]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VH0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1VH0 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.31&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1vh0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1vh0 OCA], [https://pdbe.org/1vh0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1vh0 RCSB], [https://www.ebi.ac.uk/pdbsum/1vh0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1vh0 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RLMH_STAAU RLMH_STAAU] Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA.[HAMAP-Rule:MF_00658]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vh/1vh0_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1vh0 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.


==About this Structure==
Structural analysis of a set of proteins resulting from a bacterial genomics project.,Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ Proteins. 2005 Sep 1;60(4):787-96. PMID:16021622<ref>PMID:16021622</ref>
1VH0 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1VH0 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Structural analysis of a set of proteins resulting from a bacterial genomics project., Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ, Proteins. 2005 Sep 1;60(4):787-96. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16021622 16021622]
</div>
[[Category: Single protein]]
<div class="pdbe-citations 1vh0" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]
[[Category: GenomiX, Structural.]]
[[Category: Structural GenomiX]]
[[Category: structural genomics]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Wed Nov 21 04:50:21 2007''

Latest revision as of 03:03, 28 December 2023

Crystal structure of a hypothetical proteinCrystal structure of a hypothetical protein

Structural highlights

1vh0 is a 6 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.31Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RLMH_STAAU Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA.[HAMAP-Rule:MF_00658]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.

Structural analysis of a set of proteins resulting from a bacterial genomics project.,Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ Proteins. 2005 Sep 1;60(4):787-96. PMID:16021622[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ. Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins. 2005 Sep 1;60(4):787-96. PMID:16021622 doi:http://dx.doi.org/10.1002/prot.20541

1vh0, resolution 2.31Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA