2hc1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2hc1.png|left|200px]]


<!--
==Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta.==
The line below this paragraph, containing "STRUCTURE_2hc1", creates the "Structure Box" on the page.
<StructureSection load='2hc1' size='340' side='right'caption='[[2hc1]], [[Resolution|resolution]] 1.30&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2hc1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HC1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HC1 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
{{STRUCTURE_2hc1|  PDB=2hc1  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hc1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hc1 OCA], [https://pdbe.org/2hc1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hc1 RCSB], [https://www.ebi.ac.uk/pdbsum/2hc1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hc1 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PTPRB_HUMAN PTPRB_HUMAN] Plays an important role in blood vessel remodeling and angiogenesis. Not necessary for the initial formation of blood vessels, but is essential for their maintenance and remodeling. Can induce dephosphorylation of TEK/TIE2, CDH5/VE-cadherin and KDR/VEGFR-2. Regulates angiopoietin-TIE2 signaling in endothelial cells. Acts as a negative regulator of TIE2, and controls TIE2 driven endothelial cell proliferation, which in turn affects blood vessel remodeling during embryonic development and determines blood vessel size during perinatal growth. Essential for the maintenance of endothelial cell contact integrity and for the adhesive function of VE-cadherin in endothelial cells and this requires the presence of plakoglobin (By similarity).<ref>PMID:19116766</ref> <ref>PMID:19136612</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hc/2hc1_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hc1 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Protein tyrosine phosphatases (PTPs) play roles in many biological processes and are considered to be important targets for drug discovery. As inhibitor development has proven challenging, crystal structure-based design will be very helpful to advance inhibitor potency and selectivity. Successful application of protein crystallography to drug discovery heavily relies on high-quality crystal structures of the protein of interest complexed with pharmaceutically interesting ligands. It is very important to be able to produce protein-ligand crystals rapidly and reproducibly for as many ligands as necessary. This study details our efforts to engineer the catalytic domain of human protein tyrosine phosphatase beta (HPTPbeta-CD) with properties suitable for rapid-turnaround crystallography. Structures of apo HPTPbeta-CD and its complexes with several novel small-molecule inhibitors are presented here for the first time.


===Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta.===
Engineering the catalytic domain of human protein tyrosine phosphatase beta for structure-based drug discovery.,Evdokimov AG, Pokross M, Walter R, Mekel M, Cox B, Li C, Bechard R, Genbauffe F, Andrews R, Diven C, Howard B, Rastogi V, Gray J, Maier M, Peters KG Acta Crystallogr D Biol Crystallogr. 2006 Dec;62(Pt 12):1435-45. Epub 2006, Nov 23. PMID:17139078<ref>PMID:17139078</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2hc1" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_17139078}}, adds the Publication Abstract to the page
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 17139078 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_17139078}}
__TOC__
 
</StructureSection>
==About this Structure==
2HC1 is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HC1 OCA].
 
==Reference==
Engineering the catalytic domain of human protein tyrosine phosphatase beta for structure-based drug discovery., Evdokimov AG, Pokross M, Walter R, Mekel M, Cox B, Li C, Bechard R, Genbauffe F, Andrews R, Diven C, Howard B, Rastogi V, Gray J, Maier M, Peters KG, Acta Crystallogr D Biol Crystallogr. 2006 Dec;62(Pt 12):1435-45. Epub 2006, Nov 23. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17139078 17139078]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein-tyrosine-phosphatase]]
[[Category: Large Structures]]
[[Category: Pdbx_ordinal=, <PDBx:audit_author.]]
[[Category: Evdokimov AG]]
[[Category: Drug design]]
[[Category: Mekel M]]
[[Category: Hydrolase]]
[[Category: Pokross M]]
[[Category: Inhibitor]]
[[Category: Walter R]]
[[Category: Phosphatase]]
[[Category: Protein tyrosine phosphatase]]
[[Category: Sulfamic acid]]
[[Category: Wpd-loop]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Dec  3 20:04:11 2008''

Latest revision as of 08:15, 17 October 2024

Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta.Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta.

Structural highlights

2hc1 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PTPRB_HUMAN Plays an important role in blood vessel remodeling and angiogenesis. Not necessary for the initial formation of blood vessels, but is essential for their maintenance and remodeling. Can induce dephosphorylation of TEK/TIE2, CDH5/VE-cadherin and KDR/VEGFR-2. Regulates angiopoietin-TIE2 signaling in endothelial cells. Acts as a negative regulator of TIE2, and controls TIE2 driven endothelial cell proliferation, which in turn affects blood vessel remodeling during embryonic development and determines blood vessel size during perinatal growth. Essential for the maintenance of endothelial cell contact integrity and for the adhesive function of VE-cadherin in endothelial cells and this requires the presence of plakoglobin (By similarity).[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Protein tyrosine phosphatases (PTPs) play roles in many biological processes and are considered to be important targets for drug discovery. As inhibitor development has proven challenging, crystal structure-based design will be very helpful to advance inhibitor potency and selectivity. Successful application of protein crystallography to drug discovery heavily relies on high-quality crystal structures of the protein of interest complexed with pharmaceutically interesting ligands. It is very important to be able to produce protein-ligand crystals rapidly and reproducibly for as many ligands as necessary. This study details our efforts to engineer the catalytic domain of human protein tyrosine phosphatase beta (HPTPbeta-CD) with properties suitable for rapid-turnaround crystallography. Structures of apo HPTPbeta-CD and its complexes with several novel small-molecule inhibitors are presented here for the first time.

Engineering the catalytic domain of human protein tyrosine phosphatase beta for structure-based drug discovery.,Evdokimov AG, Pokross M, Walter R, Mekel M, Cox B, Li C, Bechard R, Genbauffe F, Andrews R, Diven C, Howard B, Rastogi V, Gray J, Maier M, Peters KG Acta Crystallogr D Biol Crystallogr. 2006 Dec;62(Pt 12):1435-45. Epub 2006, Nov 23. PMID:17139078[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yacyshyn OK, Lai PF, Forse K, Teichert-Kuliszewska K, Jurasz P, Stewart DJ. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis. 2009;12(1):25-33. doi: 10.1007/s10456-008-9126-0. Epub 2009 Jan 1. PMID:19116766 doi:10.1007/s10456-008-9126-0
  2. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, Westholm JO, Larsson E, Lindahl P, Cross MJ, Claesson-Welsh L. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 2009 May;23(5):1490-502. doi: 10.1096/fj.08-123810. Epub 2009 Jan 9. PMID:19136612 doi:http://dx.doi.org/10.1096/fj.08-123810
  3. Evdokimov AG, Pokross M, Walter R, Mekel M, Cox B, Li C, Bechard R, Genbauffe F, Andrews R, Diven C, Howard B, Rastogi V, Gray J, Maier M, Peters KG. Engineering the catalytic domain of human protein tyrosine phosphatase beta for structure-based drug discovery. Acta Crystallogr D Biol Crystallogr. 2006 Dec;62(Pt 12):1435-45. Epub 2006, Nov 23. PMID:17139078 doi:http://dx.doi.org/10.1107/S0907444906037784

2hc1, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA