1udr: Difference between revisions

New page: left|200px<br /><applet load="1udr" size="450" color="white" frame="true" align="right" spinBox="true" caption="1udr, resolution 1.9Å" /> '''CHEY MUTANT WITH LYS ...
 
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1udr.gif|left|200px]]<br /><applet load="1udr" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1udr, resolution 1.9&Aring;" />
'''CHEY MUTANT WITH LYS 91 REPLACED BY ASP, LYS 92 REPLACED BY ALA, ILE 96 REPLACED BY LYS AND ALA 98 REPLACED BY LEU (STABILIZING MUTATIONS IN HELIX 4)'''<br />


==Overview==
==CHEY MUTANT WITH LYS 91 REPLACED BY ASP, LYS 92 REPLACED BY ALA, ILE 96 REPLACED BY LYS AND ALA 98 REPLACED BY LEU (STABILIZING MUTATIONS IN HELIX 4)==
The signal transduction protein CheY displays an alpha/beta-parallel, polypeptide folding, including a highly unstable helix alpha4 and a, strongly charged active site. Helix alpha4 has been shown to adopt various, positions and conformations in different crystal structures, suggesting, that it is a mobile segment. Furthermore, the instability of this helix is, believed to have functional significance because it is involved in, protein-protein contacts with the transmitter protein kinase CheA, the, target protein FliM and the phosphatase CheZ. The active site of CheY, comprises a cluster of three aspartic acid residues and a lysine residue, all of which participate in the binding of the Mg(2+) needed for the, protein activation. Two steps were followed to study the activation, mechanism of CheY upon phosphorylation: first, we independently, substituted the three aspartic acid residues in the active site with, alanine; second, several mutations were designed in helix alpha 4, both to, increase its level of stability and to improve its packing against the, protein core. The structural and thermodynamic analysis of these mutant, proteins provides further evidence of the connection between the, active-site area and helix alpha 4, and helps to understand how small, movements at the active site are transmitted and amplified to the protein, surface.
<StructureSection load='1udr' size='340' side='right'caption='[[1udr]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1udr]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UDR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UDR FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1udr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1udr OCA], [https://pdbe.org/1udr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1udr RCSB], [https://www.ebi.ac.uk/pdbsum/1udr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1udr ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ud/1udr_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1udr ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The signal transduction protein CheY displays an alpha/beta-parallel polypeptide folding, including a highly unstable helix alpha4 and a strongly charged active site. Helix alpha4 has been shown to adopt various positions and conformations in different crystal structures, suggesting that it is a mobile segment. Furthermore, the instability of this helix is believed to have functional significance because it is involved in protein-protein contacts with the transmitter protein kinase CheA, the target protein FliM and the phosphatase CheZ. The active site of CheY comprises a cluster of three aspartic acid residues and a lysine residue, all of which participate in the binding of the Mg(2+) needed for the protein activation. Two steps were followed to study the activation mechanism of CheY upon phosphorylation: first, we independently substituted the three aspartic acid residues in the active site with alanine; second, several mutations were designed in helix alpha 4, both to increase its level of stability and to improve its packing against the protein core. The structural and thermodynamic analysis of these mutant proteins provides further evidence of the connection between the active-site area and helix alpha 4, and helps to understand how small movements at the active site are transmitted and amplified to the protein surface.


==About this Structure==
Towards understanding a molecular switch mechanism: thermodynamic and crystallographic studies of the signal transduction protein CheY.,Sola M, Lopez-Hernandez E, Cronet P, Lacroix E, Serrano L, Coll M, Parraga A J Mol Biol. 2000 Oct 20;303(2):213-25. PMID:11023787<ref>PMID:11023787</ref>
1UDR is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1UDR OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Towards understanding a molecular switch mechanism: thermodynamic and crystallographic studies of the signal transduction protein CheY., Sola M, Lopez-Hernandez E, Cronet P, Lacroix E, Serrano L, Coll M, Parraga A, J Mol Biol. 2000 Oct 20;303(2):213-25. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=11023787 11023787]
</div>
<div class="pdbe-citations 1udr" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Coll, M.]]
[[Category: Coll M]]
[[Category: Parraga, A.]]
[[Category: Parraga A]]
[[Category: chemotaxis]]
[[Category: phosphoryl transfer]]
[[Category: signal transduction]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Wed Nov 21 04:03:03 2007''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA