1ude: Difference between revisions
New page: left|200px<br /><applet load="1ude" size="450" color="white" frame="true" align="right" spinBox="true" caption="1ude, resolution 2.66Å" /> '''Crystal structure of... |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of the Inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3== | ||
A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) | <StructureSection load='1ude' size='340' side='right'caption='[[1ude]], [[Resolution|resolution]] 2.66Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1ude]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_horikoshii Pyrococcus horikoshii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UDE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UDE FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.66Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ude FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ude OCA], [https://pdbe.org/1ude PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ude RCSB], [https://www.ebi.ac.uk/pdbsum/1ude PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ude ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/IPYR_PYRHO IPYR_PYRHO] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ud/1ude_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ude ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 88 degrees C. To understand the structural basis for the thermostability of Pho-PPase, we have determined the crystal structure to 2.66 A resolution. The crystallographic asymmetric unit contains three monomers related by approximate threefold symmetry, and a hexamer is built up by twofold crystallographic symmetry. The main-chain fold of Pho-PPase is almost identical to that of the known crystal structure of the model from Sulfolobus acidocaldarius. A detailed comparison of the crystal structure of Pho-PPase with related structures from S. acidocaldarius, Thermus thermophilus, and Escherichia coli shows significant differences that may account for the difference in their thermostabilities. A reduction in thermolabile residues, additional aromatic residues, and more intimate association between subunits all contribute to the larger thermophilicity of Pho-PPase. In particular, deletions in two loops surrounding the active site help to stabilize its conformation, while ion-pair networks unique to Pho-PPase are located in the active site and near the C-terminus. The identification of structural features that make PPases more adaptable to extreme temperature should prove helpful for future biotechnology applications. | |||
Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii.,Liu B, Bartlam M, Gao R, Zhou W, Pang H, Liu Y, Feng Y, Rao Z Biophys J. 2004 Jan;86(1 Pt 1):420-7. PMID:14695284<ref>PMID:14695284</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1ude" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Inorganic pyrophosphatase 3D structures|Inorganic pyrophosphatase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Pyrococcus horikoshii]] | [[Category: Pyrococcus horikoshii]] | ||
[[Category: Bartlam M]] | |||
[[Category: Bartlam | [[Category: Gao R]] | ||
[[Category: Gao | [[Category: Liu B]] | ||
[[Category: Liu | [[Category: Rao Z]] | ||
[[Category: Rao | [[Category: Zhou W]] | ||
[[Category: Zhou | |||