2vws: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 2vws is ON HOLD  until Paper Publication
==Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12==
<StructureSection load='2vws' size='340' side='right'caption='[[2vws]], [[Resolution|resolution]] 1.39&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2vws]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VWS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2VWS FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.39&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2vws FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vws OCA], [https://pdbe.org/2vws PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2vws RCSB], [https://www.ebi.ac.uk/pdbsum/2vws PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2vws ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RHMA_ECOLI RHMA_ECOLI] Catalyzes the reversible retro-aldol cleavage of 2-keto-3-deoxy-L-rhamnonate (KDR) to pyruvate and lactaldehyde. 2-keto-3-deoxy-L-mannonate, 2-keto-3-deoxy-L-lyxonate and 4-hydroxy-2-ketoheptane-1,7-dioate (HKHD) are also reasonably good substrates, although 2-keto-3-deoxy-L-rhamnonate is likely to be the physiological substrate.<ref>PMID:18754683</ref> <ref>PMID:18754693</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vw/2vws_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2vws ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, XXXXX-XXXXX). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.


Authors: Rea, D., Rakus, J.F., Gerlt, J.A., Fulop, V., Bugg, T.D.H., Roper, D.I.
Crystal Structure and Functional Assignment of YfaU, a Metal Ion Dependent Class II Aldolase from Escherichia coli K12.,Rea D, Hovington R, Rakus JF, Gerlt JA, Fulop V, Bugg TD, Roper DI Biochemistry. 2008 Aug 29. PMID:18754683<ref>PMID:18754683</ref>


Description: Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2vws" style="background-color:#fffaf0;"></div>


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Jul 23 12:10:01 2008''
==See Also==
*[[Aldolase 3D structures|Aldolase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Bugg TDH]]
[[Category: Fulop V]]
[[Category: Gerlt JA]]
[[Category: Rakus JF]]
[[Category: Rea D]]
[[Category: Roper DI]]

Latest revision as of 18:35, 13 December 2023

Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12

Structural highlights

2vws is a 3 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.39Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RHMA_ECOLI Catalyzes the reversible retro-aldol cleavage of 2-keto-3-deoxy-L-rhamnonate (KDR) to pyruvate and lactaldehyde. 2-keto-3-deoxy-L-mannonate, 2-keto-3-deoxy-L-lyxonate and 4-hydroxy-2-ketoheptane-1,7-dioate (HKHD) are also reasonably good substrates, although 2-keto-3-deoxy-L-rhamnonate is likely to be the physiological substrate.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, XXXXX-XXXXX). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.

Crystal Structure and Functional Assignment of YfaU, a Metal Ion Dependent Class II Aldolase from Escherichia coli K12.,Rea D, Hovington R, Rakus JF, Gerlt JA, Fulop V, Bugg TD, Roper DI Biochemistry. 2008 Aug 29. PMID:18754683[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rea D, Hovington R, Rakus JF, Gerlt JA, Fulop V, Bugg TD, Roper DI. Crystal Structure and Functional Assignment of YfaU, a Metal Ion Dependent Class II Aldolase from Escherichia coli K12. Biochemistry. 2008 Aug 29. PMID:18754683 doi:10.1021/bi800943g
  2. Rakus JF, Fedorov AA, Fedorov EV, Glasner ME, Hubbard BK, Delli JD, Babbitt PC, Almo SC, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase. Biochemistry. 2008 Sep 23;47(38):9944-54. Epub 2008 Aug 29. PMID:18754693 doi:10.1021/bi800914r
  3. Rea D, Hovington R, Rakus JF, Gerlt JA, Fulop V, Bugg TD, Roper DI. Crystal Structure and Functional Assignment of YfaU, a Metal Ion Dependent Class II Aldolase from Escherichia coli K12. Biochemistry. 2008 Aug 29. PMID:18754683 doi:10.1021/bi800943g

2vws, resolution 1.39Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA