2vwc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: {{Seed}} left|200px <!-- The line below this paragraph, containing "STRUCTURE_2vwc", creates the "Structure Box" on the page. You may change the PDB parameter (which se...
 
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2vwc.jpg|left|200px]]


<!--
==STRUCTURE OF THE HSP90 INHIBITOR MACBECIN BOUND TO THE N-TERMINUS OF YEAST HSP90.==
The line below this paragraph, containing "STRUCTURE_2vwc", creates the "Structure Box" on the page.
<StructureSection load='2vwc' size='340' side='right'caption='[[2vwc]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2vwc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2vls 2vls]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VWC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2VWC FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BC2:MACBECIN'>BC2</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
{{STRUCTURE_2vwc|  PDB=2vwc  |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2vwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vwc OCA], [https://pdbe.org/2vwc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2vwc RCSB], [https://www.ebi.ac.uk/pdbsum/2vwc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2vwc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HSP82_YEAST HSP82_YEAST] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. The nucleotide-free form of the dimer is found in an open conformation in which the N-termini are not dimerized and the complex is ready for client protein binding. Binding of ATP induces large conformational changes, resulting in the formation of a ring-like closed structure in which the N-terminal domains associate intramolecularly with the middle domain and also dimerize with each other, stimulating their intrinsic ATPase activity and acting as a clamp on the substrate. Finally, ATP hydrolysis results in the release of the substrate. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Required for growth at high temperatures.<ref>PMID:17114002</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vw/2vwc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2vwc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Macbecin compares favorably to geldanamycin as an Hsp90 inhibitor, being more soluble, stable, more potently inhibiting ATPase activity (IC 50 = 2 microM) and binding with higher affinity ( K d = 0.24 microM). Structural studies reveal significant differences in their Hsp90 binding characteristics, and macbecin-induced tumor cell growth inhibition is accompanied by characteristic degradation of Hsp90 client proteins. Macbecin significantly reduced tumor growth rates (minimum T/ C: 32%) in a DU145 murine xenograft. Macbecin thus represents an attractive lead for further optimization.


===STRUCTURE OF THE HSP90 INHIBITOR MACBECIN BOUND TO THE N-TERMINUS OF YEAST HSP90.===
Molecular Characterization of Macbecin as an Hsp90 Inhibitor.,Martin CJ, Gaisser S, Challis IR, Carletti I, Wilkinson B, Gregory M, Prodromou C, Roe SM, Pearl LH, Boyd SM, Zhang MQ J Med Chem. 2008 Mar 22;. PMID:18357975<ref>PMID:18357975</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2vwc" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_18357975}}, adds the Publication Abstract to the page
*[[Heat Shock Protein structures|Heat Shock Protein structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 18357975 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_18357975}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
2VWC is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2vls 2vls]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VWC OCA].
 
==Reference==
Molecular Characterization of Macbecin as an Hsp90 Inhibitor., Martin CJ, Gaisser S, Challis IR, Carletti I, Wilkinson B, Gregory M, Prodromou C, Roe SM, Pearl LH, Boyd SM, Zhang MQ, J Med Chem. 2008 Mar 22;. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18357975 18357975]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Single protein]]
[[Category: Pearl LH]]
[[Category: Pearl, L H.]]
[[Category: Prodromou C]]
[[Category: Prodromou, C.]]
[[Category: Roe SM]]
[[Category: Roe, S M.]]
[[Category: Atp-binding]]
[[Category: Chaperone]]
[[Category: Chaperone-complex]]
[[Category: Chaperone/complex]]
[[Category: Cytoplasm]]
[[Category: Heat shock]]
[[Category: Inhibitor]]
[[Category: Multigene family]]
[[Category: Nucleotide-binding]]
[[Category: Stress response]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Jul  3 11:24:21 2008''

Latest revision as of 18:34, 13 December 2023

STRUCTURE OF THE HSP90 INHIBITOR MACBECIN BOUND TO THE N-TERMINUS OF YEAST HSP90.STRUCTURE OF THE HSP90 INHIBITOR MACBECIN BOUND TO THE N-TERMINUS OF YEAST HSP90.

Structural highlights

2vwc is a 1 chain structure with sequence from Saccharomyces cerevisiae. This structure supersedes the now removed PDB entry 2vls. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HSP82_YEAST Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. The nucleotide-free form of the dimer is found in an open conformation in which the N-termini are not dimerized and the complex is ready for client protein binding. Binding of ATP induces large conformational changes, resulting in the formation of a ring-like closed structure in which the N-terminal domains associate intramolecularly with the middle domain and also dimerize with each other, stimulating their intrinsic ATPase activity and acting as a clamp on the substrate. Finally, ATP hydrolysis results in the release of the substrate. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Required for growth at high temperatures.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Macbecin compares favorably to geldanamycin as an Hsp90 inhibitor, being more soluble, stable, more potently inhibiting ATPase activity (IC 50 = 2 microM) and binding with higher affinity ( K d = 0.24 microM). Structural studies reveal significant differences in their Hsp90 binding characteristics, and macbecin-induced tumor cell growth inhibition is accompanied by characteristic degradation of Hsp90 client proteins. Macbecin significantly reduced tumor growth rates (minimum T/ C: 32%) in a DU145 murine xenograft. Macbecin thus represents an attractive lead for further optimization.

Molecular Characterization of Macbecin as an Hsp90 Inhibitor.,Martin CJ, Gaisser S, Challis IR, Carletti I, Wilkinson B, Gregory M, Prodromou C, Roe SM, Pearl LH, Boyd SM, Zhang MQ J Med Chem. 2008 Mar 22;. PMID:18357975[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Proisy N, Sharp SY, Boxall K, Connelly S, Roe SM, Prodromou C, Slawin AM, Pearl LH, Workman P, Moody CJ. Inhibition of Hsp90 with synthetic macrolactones: synthesis and structural and biological evaluation of ring and conformational analogs of radicicol. Chem Biol. 2006 Nov;13(11):1203-15. PMID:17114002 doi:10.1016/j.chembiol.2006.09.015
  2. Martin CJ, Gaisser S, Challis IR, Carletti I, Wilkinson B, Gregory M, Prodromou C, Roe SM, Pearl LH, Boyd SM, Zhang MQ. Molecular Characterization of Macbecin as an Hsp90 Inhibitor. J Med Chem. 2008 Mar 22;. PMID:18357975 doi:10.1021/jm701558c

2vwc, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA