1jhc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1jhc.png|left|200px]]


<!--
==LEXA S119A C-TERMINAL TRYPTIC FRAGMENT==
The line below this paragraph, containing "STRUCTURE_1jhc", creates the "Structure Box" on the page.
<StructureSection load='1jhc' size='340' side='right'caption='[[1jhc]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1jhc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JHC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JHC FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jhc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jhc OCA], [https://pdbe.org/1jhc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jhc RCSB], [https://www.ebi.ac.uk/pdbsum/1jhc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jhc ProSAT]</span></td></tr>
{{STRUCTURE_1jhc|  PDB=1jhc  |  SCENE= }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/LEXA_ECOLI LEXA_ECOLI] Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.<ref>PMID:7027255</ref> <ref>PMID:7027256</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jh/1jhc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jhc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
LexA repressor undergoes a self-cleavage reaction. In vivo, this reaction requires an activated form of RecA, but it occurs spontaneously in vitro at high pH. Accordingly, LexA must both allow self-cleavage and yet prevent this reaction in the absence of a stimulus. We have solved the crystal structures of several mutant forms of LexA. Strikingly, two distinct conformations are observed, one compatible with cleavage, and the other in which the cleavage site is approximately 20 A from the catalytic center. Our analysis provides insight into the structural and energetic features that modulate the interconversion between these two forms and hence the rate of the self-cleavage reaction. We suggest RecA activates the self-cleavage of LexA and related proteins through selective stabilization of the cleavable conformation.


===LEXA S119A C-TERMINAL TRYPTIC FRAGMENT===
Crystal structure of LexA: a conformational switch for regulation of self-cleavage.,Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC Cell. 2001 Sep 7;106(5):585-94. PMID:11551506<ref>PMID:11551506</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_11551506}}, adds the Publication Abstract to the page
<div class="pdbe-citations 1jhc" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 11551506 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_11551506}}
__TOC__
 
</StructureSection>
==About this Structure==
1JHC is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JHC OCA].
 
==Reference==
Crystal structure of LexA: a conformational switch for regulation of self-cleavage., Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC, Cell. 2001 Sep 7;106(5):585-94. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11551506 11551506]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Repressor lexA]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Little JW]]
[[Category: Little, J W.]]
[[Category: Luo Y]]
[[Category: Luo, Y.]]
[[Category: Mosimann S]]
[[Category: Mosimann, S.]]
[[Category: Pfuetzner RA]]
[[Category: Pfuetzner, R A.]]
[[Category: Strynadka NCJ]]
[[Category: Strynadka, N C.J.]]
[[Category: Lexa sos repressor]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul  1 20:14:43 2008''

Latest revision as of 11:40, 16 August 2023

LEXA S119A C-TERMINAL TRYPTIC FRAGMENTLEXA S119A C-TERMINAL TRYPTIC FRAGMENT

Structural highlights

1jhc is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LEXA_ECOLI Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

LexA repressor undergoes a self-cleavage reaction. In vivo, this reaction requires an activated form of RecA, but it occurs spontaneously in vitro at high pH. Accordingly, LexA must both allow self-cleavage and yet prevent this reaction in the absence of a stimulus. We have solved the crystal structures of several mutant forms of LexA. Strikingly, two distinct conformations are observed, one compatible with cleavage, and the other in which the cleavage site is approximately 20 A from the catalytic center. Our analysis provides insight into the structural and energetic features that modulate the interconversion between these two forms and hence the rate of the self-cleavage reaction. We suggest RecA activates the self-cleavage of LexA and related proteins through selective stabilization of the cleavable conformation.

Crystal structure of LexA: a conformational switch for regulation of self-cleavage.,Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC Cell. 2001 Sep 7;106(5):585-94. PMID:11551506[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Little JW, Mount DW, Yanisch-Perron CR. Purified lexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4199-203. PMID:7027255
  2. Brent R, Ptashne M. Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4204-8. PMID:7027256
  3. Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA, Cherney M, Kim B, Little JW, Strynadka NC. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell. 2001 Sep 7;106(5):585-94. PMID:11551506

1jhc, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA