1dao: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1dao.png|left|200px]]


<!--
==COVALENT ADDUCT OF D-AMINO ACID OXIDASE FROM PIG KIDNEY WITH 3-METHYL-2-OXO-VALERIC ACID==
The line below this paragraph, containing "STRUCTURE_1dao", creates the "Structure Box" on the page.
<StructureSection load='1dao' size='340' side='right'caption='[[1dao]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1dao]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DAO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1DAO FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAB:FLAVIN-ADENINE+DINUCLEOTIDE-N5-ISOBUTYL+KETONE'>FAB</scene></td></tr>
{{STRUCTURE_1dao|  PDB=1dao  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1dao FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dao OCA], [https://pdbe.org/1dao PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1dao RCSB], [https://www.ebi.ac.uk/pdbsum/1dao PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1dao ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/OXDA_PIG OXDA_PIG] Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D-amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/da/1dao_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dao ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
D-Amino acid oxidase (DAAO) is the prototype of the flavin-containing oxidases. It catalyzes the oxidative deamination of various D-amino acids, ranging from D-Ala to D-Trp. We have carried out the X-ray analysis of reduced DAAO in complex with the reaction product imino tryptophan (iTrp) and of the covalent adduct generated by the photoinduced reaction of the flavin with 3-methyl-2-oxobutyric acid (kVal). These structures were solved by combination of 8-fold density averaging and least-squares refinement techniques. The FAD redox state of DAAO crystals was assessed by single-crystal polarized absorption microspectrophotometry. iTrp binds to the reduced enzyme with the N, C alpha, C, and C beta atoms positioned 3.8 A from the re side of the flavin. The indole side chain points away from the cofactor and is bound in the active site through a rotation of Tyr224. This residue plays a crucial role in that it adapts its conformation to the size of the active site ligand, providing the enzyme with the plasticity required for binding a broad range of substrates. The iTrp binding mode is fully consistent with the proposal, inferred from the analysis of the native DAAO structure, that substrate oxidation occurs via direct hydride transfer from the C alpha to the flavin N5 atom. In this regard, it is remarkable that, even in the presence of the bulky iTrp ligand, the active center is made solvent inaccessible by loop 216-228. This loop is thought to switch between the "closed" conformation observed in the crystal structures and an "open" state required for substrate binding and product release. Loop closure is likely to have a role in catalysis by increasing the hydrophobicity of the active site, thus making the hydride transfer reaction more effective. Binding of kVal leads to keto acid decarboxylation and formation of a covalent bond between the keto acid C alpha and the flavin N5 atoms. Formation of this acyl adduct results in a nonplanar flavin, characterized by a 22 degrees angle between the pyrimidine and benzene rings. Thus, in addition to an adaptable substrate binding site, DAAO has the ability to bind a highly distorted cofactor. This ability is relevant for the enzyme's function as a highly efficient oxidase.


===COVALENT ADDUCT OF D-AMINO ACID OXIDASE FROM PIG KIDNEY WITH 3-METHYL-2-OXO-VALERIC ACID===
Active site plasticity in D-amino acid oxidase: a crystallographic analysis.,Todone F, Vanoni MA, Mozzarelli A, Bolognesi M, Coda A, Curti B, Mattevi A Biochemistry. 1997 May 13;36(19):5853-60. PMID:9153426<ref>PMID:9153426</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1dao" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_9153426}}, adds the Publication Abstract to the page
*[[Amino acid oxidase 3D structures|Amino acid oxidase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 9153426 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_9153426}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1DAO is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DAO OCA].
 
==Reference==
Active site plasticity in D-amino acid oxidase: a crystallographic analysis., Todone F, Vanoni MA, Mozzarelli A, Bolognesi M, Coda A, Curti B, Mattevi A, Biochemistry. 1997 May 13;36(19):5853-60. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9153426 9153426]
[[Category: D-amino-acid oxidase]]
[[Category: Single protein]]
[[Category: Sus scrofa]]
[[Category: Sus scrofa]]
[[Category: Mattevi, A.]]
[[Category: Mattevi A]]
[[Category: Todone, F.]]
[[Category: Todone F]]
[[Category: Fad cofactor]]
[[Category: Flavoenzyme]]
[[Category: Oxidoreductase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jun 30 22:45:06 2008''

Latest revision as of 08:56, 9 August 2023

COVALENT ADDUCT OF D-AMINO ACID OXIDASE FROM PIG KIDNEY WITH 3-METHYL-2-OXO-VALERIC ACIDCOVALENT ADDUCT OF D-AMINO ACID OXIDASE FROM PIG KIDNEY WITH 3-METHYL-2-OXO-VALERIC ACID

Structural highlights

1dao is a 8 chain structure with sequence from Sus scrofa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

OXDA_PIG Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D-amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

D-Amino acid oxidase (DAAO) is the prototype of the flavin-containing oxidases. It catalyzes the oxidative deamination of various D-amino acids, ranging from D-Ala to D-Trp. We have carried out the X-ray analysis of reduced DAAO in complex with the reaction product imino tryptophan (iTrp) and of the covalent adduct generated by the photoinduced reaction of the flavin with 3-methyl-2-oxobutyric acid (kVal). These structures were solved by combination of 8-fold density averaging and least-squares refinement techniques. The FAD redox state of DAAO crystals was assessed by single-crystal polarized absorption microspectrophotometry. iTrp binds to the reduced enzyme with the N, C alpha, C, and C beta atoms positioned 3.8 A from the re side of the flavin. The indole side chain points away from the cofactor and is bound in the active site through a rotation of Tyr224. This residue plays a crucial role in that it adapts its conformation to the size of the active site ligand, providing the enzyme with the plasticity required for binding a broad range of substrates. The iTrp binding mode is fully consistent with the proposal, inferred from the analysis of the native DAAO structure, that substrate oxidation occurs via direct hydride transfer from the C alpha to the flavin N5 atom. In this regard, it is remarkable that, even in the presence of the bulky iTrp ligand, the active center is made solvent inaccessible by loop 216-228. This loop is thought to switch between the "closed" conformation observed in the crystal structures and an "open" state required for substrate binding and product release. Loop closure is likely to have a role in catalysis by increasing the hydrophobicity of the active site, thus making the hydride transfer reaction more effective. Binding of kVal leads to keto acid decarboxylation and formation of a covalent bond between the keto acid C alpha and the flavin N5 atoms. Formation of this acyl adduct results in a nonplanar flavin, characterized by a 22 degrees angle between the pyrimidine and benzene rings. Thus, in addition to an adaptable substrate binding site, DAAO has the ability to bind a highly distorted cofactor. This ability is relevant for the enzyme's function as a highly efficient oxidase.

Active site plasticity in D-amino acid oxidase: a crystallographic analysis.,Todone F, Vanoni MA, Mozzarelli A, Bolognesi M, Coda A, Curti B, Mattevi A Biochemistry. 1997 May 13;36(19):5853-60. PMID:9153426[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Todone F, Vanoni MA, Mozzarelli A, Bolognesi M, Coda A, Curti B, Mattevi A. Active site plasticity in D-amino acid oxidase: a crystallographic analysis. Biochemistry. 1997 May 13;36(19):5853-60. PMID:9153426 doi:10.1021/bi9630570

1dao, resolution 3.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA