2ot1: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with naphthol AS-E phosphate, a competitive inhibitor== | |||
<StructureSection load='2ot1' size='340' side='right'caption='[[2ot1]], [[Resolution|resolution]] 2.05Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ot1]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OT1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OT1 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.05Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=N3P:N-(4-CHLOROPHENYL)-3-(PHOSPHONOOXY)NAPHTHALENE-2-CARBOXAMIDE'>N3P</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ot1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ot1 OCA], [https://pdbe.org/2ot1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ot1 RCSB], [https://www.ebi.ac.uk/pdbsum/2ot1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ot1 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ALDOA_RABIT ALDOA_RABIT] Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein.<ref>PMID:17329259</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ot/2ot1_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ot1 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, four-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds around the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C terminus with its active site and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure, a novel naphthol phosphate-based inhibitor of aldolase was identified, and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics. | |||
A hydrophobic pocket in the active site of glycolytic aldolase mediates interactions with Wiskott-Aldrich syndrome protein.,St-Jean M, Izard T, Sygusch J J Biol Chem. 2007 May 11;282(19):14309-15. Epub 2007 Feb 27. PMID:17329259<ref>PMID:17329259</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ot1" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Aldolase 3D structures|Aldolase 3D structures]] | |||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Oryctolagus cuniculus]] | [[Category: Oryctolagus cuniculus]] | ||
[[Category: Izard T]] | |||
[[Category: Izard | [[Category: St-Jean M]] | ||
[[Category: St-Jean | [[Category: Sygusch J]] | ||
[[Category: Sygusch | |||