2ahe: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2ahe.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_2ahe", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2ahe|  PDB=2ahe  |  SCENE=  }}
'''Crystal structure of a soluble form of CLIC4. intercellular chloride ion channel'''


==Crystal structure of a soluble form of CLIC4. intercellular chloride ion channel==
<StructureSection load='2ahe' size='340' side='right'caption='[[2ahe]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2ahe]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AHE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2AHE FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ahe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ahe OCA], [https://pdbe.org/2ahe PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ahe RCSB], [https://www.ebi.ac.uk/pdbsum/2ahe PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ahe ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CLIC4_HUMAN CLIC4_HUMAN] Can insert into membranes and form poorly selective ion channels that may also transport chloride ions. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Promotes cell-surface expression of HRH3. Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis).<ref>PMID:12163372</ref> <ref>PMID:14569596</ref> <ref>PMID:16239224</ref> <ref>PMID:18302930</ref> <ref>PMID:19247789</ref> <ref>PMID:16176272</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ah/2ahe_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ahe ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The structure of CLIC4, a member of the CLIC family of putative intracellular chloride ion channel proteins, has been determined at 1.8 Angstroms resolution by X-ray crystallography. The protein is monomeric and it is structurally similar to CLIC1, belonging to the GST fold class. Differences between the structures of CLIC1 and CLIC4 are localized to helix 2 in the glutaredoxin-like N-terminal domain, which has previously been shown to undergo a dramatic structural change in CLIC1 upon oxidation. The structural differences in this region correlate with the sequence differences, where the CLIC1 sequence appears to be atypical of the family. Purified, recombinant, wild-type CLIC4 is shown to bind to artificial lipid bilayers, induce a chloride efflux current when associated with artificial liposomes and produce an ion channel in artificial bilayers with a conductance of 30 pS. Membrane binding is enhanced by oxidation of CLIC4 while no channels were observed via tip-dip electrophysiology in the presence of a reducing agent. Thus, recombinant CLIC4 appears to be able to form a redox-regulated ion channel in the absence of any partner proteins.


==Overview==
Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4.,Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P, Aguilar MI, Mazzanti M, Berryman MA, Breit SN, Curmi PM FEBS J. 2005 Oct;272(19):4996-5007. PMID:16176272<ref>PMID:16176272</ref>
The structure of CLIC4, a member of the CLIC family of putative intracellular chloride ion channel proteins, has been determined at 1.8 Angstroms resolution by X-ray crystallography. The protein is monomeric and it is structurally similar to CLIC1, belonging to the GST fold class. Differences between the structures of CLIC1 and CLIC4 are localized to helix 2 in the glutaredoxin-like N-terminal domain, which has previously been shown to undergo a dramatic structural change in CLIC1 upon oxidation. The structural differences in this region correlate with the sequence differences, where the CLIC1 sequence appears to be atypical of the family. Purified, recombinant, wild-type CLIC4 is shown to bind to artificial lipid bilayers, induce a chloride efflux current when associated with artificial liposomes and produce an ion channel in artificial bilayers with a conductance of 30 pS. Membrane binding is enhanced by oxidation of CLIC4 while no channels were observed via tip-dip electrophysiology in the presence of a reducing agent. Thus, recombinant CLIC4 appears to be able to form a redox-regulated ion channel in the absence of any partner proteins.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2AHE is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AHE OCA].
</div>
<div class="pdbe-citations 2ahe" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4., Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P, Aguilar MI, Mazzanti M, Berryman MA, Breit SN, Curmi PM, FEBS J. 2005 Oct;272(19):4996-5007. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16176272 16176272]
*[[Ion channels 3D structures|Ion channels 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Aguilar, M I.]]
[[Category: Aguilar M-I]]
[[Category: Assaad, N N.]]
[[Category: Assaad NN]]
[[Category: Berryman, M A.]]
[[Category: Berryman MA]]
[[Category: Breit, S N.]]
[[Category: Breit SN]]
[[Category: Brown, L J.]]
[[Category: Brown LJ]]
[[Category: Curmi, P M.G.]]
[[Category: Curmi PMG]]
[[Category: Harrop, S J.]]
[[Category: Harrop SJ]]
[[Category: Littler, D R.]]
[[Category: Littler DR]]
[[Category: Luciani, P.]]
[[Category: Luciani P]]
[[Category: Mazzanti, M.]]
[[Category: Mazzanti M]]
[[Category: Pankhurst, G J.]]
[[Category: Pankhurst GJ]]
[[Category: Chloride ion channel]]
[[Category: Clic4]]
[[Category: Glutathione-s-transferase superfamily]]
[[Category: Ncc27]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 19:03:00 2008''

Latest revision as of 11:17, 25 October 2023

Crystal structure of a soluble form of CLIC4. intercellular chloride ion channelCrystal structure of a soluble form of CLIC4. intercellular chloride ion channel

Structural highlights

2ahe is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CLIC4_HUMAN Can insert into membranes and form poorly selective ion channels that may also transport chloride ions. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Promotes cell-surface expression of HRH3. Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis).[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structure of CLIC4, a member of the CLIC family of putative intracellular chloride ion channel proteins, has been determined at 1.8 Angstroms resolution by X-ray crystallography. The protein is monomeric and it is structurally similar to CLIC1, belonging to the GST fold class. Differences between the structures of CLIC1 and CLIC4 are localized to helix 2 in the glutaredoxin-like N-terminal domain, which has previously been shown to undergo a dramatic structural change in CLIC1 upon oxidation. The structural differences in this region correlate with the sequence differences, where the CLIC1 sequence appears to be atypical of the family. Purified, recombinant, wild-type CLIC4 is shown to bind to artificial lipid bilayers, induce a chloride efflux current when associated with artificial liposomes and produce an ion channel in artificial bilayers with a conductance of 30 pS. Membrane binding is enhanced by oxidation of CLIC4 while no channels were observed via tip-dip electrophysiology in the presence of a reducing agent. Thus, recombinant CLIC4 appears to be able to form a redox-regulated ion channel in the absence of any partner proteins.

Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4.,Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P, Aguilar MI, Mazzanti M, Berryman MA, Breit SN, Curmi PM FEBS J. 2005 Oct;272(19):4996-5007. PMID:16176272[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ronnov-Jessen L, Villadsen R, Edwards JC, Petersen OW. Differential expression of a chloride intracellular channel gene, CLIC4, in transforming growth factor-beta1-mediated conversion of fibroblasts to myofibroblasts. Am J Pathol. 2002 Aug;161(2):471-80. PMID:12163372
  2. Berryman MA, Goldenring JR. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton. 2003 Nov;56(3):159-72. PMID:14569596 doi:http://dx.doi.org/10.1002/cm.10141
  3. Bohman S, Matsumoto T, Suh K, Dimberg A, Jakobsson L, Yuspa S, Claesson-Welsh L. Proteomic analysis of vascular endothelial growth factor-induced endothelial cell differentiation reveals a role for chloride intracellular channel 4 (CLIC4) in tubular morphogenesis. J Biol Chem. 2005 Dec 23;280(51):42397-404. Epub 2005 Oct 20. PMID:16239224 doi:http://dx.doi.org/10.1074/jbc.M506724200
  4. Maeda K, Haraguchi M, Kuramasu A, Sato T, Ariake K, Sakagami H, Kondo H, Yanai K, Fukunaga K, Yanagisawa T, Sukegawa J. CLIC4 interacts with histamine H3 receptor and enhances the receptor cell surface expression. Biochem Biophys Res Commun. 2008 May 2;369(2):603-8. Epub 2008 Feb 25. PMID:18302930 doi:http://dx.doi.org/S0006-291X(08)00320-3
  5. Tung JJ, Hobert O, Berryman M, Kitajewski J. Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis. 2009;12(3):209-20. doi: 10.1007/s10456-009-9139-3. Epub 2009 Feb, 27. PMID:19247789 doi:http://dx.doi.org/10.1007/s10456-009-9139-3
  6. Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P, Aguilar MI, Mazzanti M, Berryman MA, Breit SN, Curmi PM. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J. 2005 Oct;272(19):4996-5007. PMID:16176272 doi:10.1111/j.1742-4658.2005.04909.x
  7. Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P, Aguilar MI, Mazzanti M, Berryman MA, Breit SN, Curmi PM. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J. 2005 Oct;272(19):4996-5007. PMID:16176272 doi:10.1111/j.1742-4658.2005.04909.x

2ahe, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA