1uw9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1uw9.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1uw9", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1uw9|  PDB=1uw9  |  SCENE=  }}
'''L290F-A222T CHLAMYDOMONAS RUBISCO MUTANT'''


==L290F-A222T chlamydomonas Rubisco mutant==
<StructureSection load='1uw9' size='340' side='right'caption='[[1uw9]], [[Resolution|resolution]] 2.05&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1uw9]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UW9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UW9 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.05&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAP:2-CARBOXYARABINITOL-1,5-DIPHOSPHATE'>CAP</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=HYP:4-HYDROXYPROLINE'>HYP</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SMC:S-METHYLCYSTEINE'>SMC</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uw9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uw9 OCA], [https://pdbe.org/1uw9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uw9 RCSB], [https://www.ebi.ac.uk/pdbsum/1uw9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uw9 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RBL_CHLRE RBL_CHLRE] RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uw/1uw9_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uw9 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.


==Overview==
Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase.,Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I Biochemistry. 2005 Jan 11;44(1):113-20. PMID:15628851<ref>PMID:15628851</ref>
Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1UW9 is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UW9 OCA].
</div>
<div class="pdbe-citations 1uw9" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase., Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I, Biochemistry. 2005 Jan 11;44(1):113-20. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15628851 15628851]
*[[RuBisCO 3D structures|RuBisCO 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Chlamydomonas reinhardtii]]
[[Category: Chlamydomonas reinhardtii]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Ribulose-bisphosphate carboxylase]]
[[Category: Andersson I]]
[[Category: Andersson, I.]]
[[Category: Karkehabadi S]]
[[Category: Karkehabadi, S.]]
[[Category: Spreitzer RJ]]
[[Category: Spreitzer, R J.]]
[[Category: Taylor TC]]
[[Category: Taylor, T C.]]
[[Category: Carbon dioxide fixation]]
[[Category: Lyase]]
[[Category: Monooxygenase]]
[[Category: Oxidoreductase]]
[[Category: Photorespiration]]
[[Category: Photosynthesis]]
[[Category: Rubisco]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 11:46:01 2008''

Latest revision as of 16:01, 13 December 2023

L290F-A222T chlamydomonas Rubisco mutantL290F-A222T chlamydomonas Rubisco mutant

Structural highlights

1uw9 is a 16 chain structure with sequence from Chlamydomonas reinhardtii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.05Å
Ligands:, , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RBL_CHLRE RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.

Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase.,Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I Biochemistry. 2005 Jan 11;44(1):113-20. PMID:15628851[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I. Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 2005 Jan 11;44(1):113-20. PMID:15628851 doi:http://dx.doi.org/10.1021/bi047928e

1uw9, resolution 2.05Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA