3ald: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/THM1_THADA THM1_THADA] Taste-modifying protein; intensely sweet-tasting. It is 100000 times sweeter than sucrose on a molar basis. | [https://www.uniprot.org/uniprot/THM1_THADA THM1_THADA] Taste-modifying protein; intensely sweet-tasting. It is 100000 times sweeter than sucrose on a molar basis. | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at a concentration of 50 nM. The crystal structure of a recombinant form of thaumatin I produced in the yeast Pichia pastoris has been determined to a resolution of 1.1 A. The model was refined with anisotropic B parameters and riding H atoms. A comparison of the diffraction data and refinement statistics for recombinant thaumatin I with those for plant thaumatin I revealed no significant differences in the diffraction data. The R values for recombinant thaumatin I and plant thaumatin I (F(o) > 4sigma) were 9.11% and 9.91%, respectively, indicating the final model to be of good quality. Notably, the electron-density maps around Asn46 and Ser63, which differ between thaumatin variants, were significantly improved. Furthermore, a number of H atoms became visible in an OMIT map and could be assigned. The high-quality structure of recombinant thaumatin with H atoms should provide details about sweetness determinants in thaumatin and provide valuable insights into the mechanism of its interaction with taste receptors. | |||
High-resolution structure of the recombinant sweet-tasting protein thaumatin I.,Masuda T, Ohta K, Mikami B, Kitabatake N Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Jun 1;67(Pt, 6):652-8. Epub 2011 May 24. PMID:21636903<ref>PMID:21636903</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3ald" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 04:36, 21 November 2024
Crystal structure of sweet-tasting protein Thaumatin I at 1.10 ACrystal structure of sweet-tasting protein Thaumatin I at 1.10 A
Structural highlights
FunctionTHM1_THADA Taste-modifying protein; intensely sweet-tasting. It is 100000 times sweeter than sucrose on a molar basis. Publication Abstract from PubMedThaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at a concentration of 50 nM. The crystal structure of a recombinant form of thaumatin I produced in the yeast Pichia pastoris has been determined to a resolution of 1.1 A. The model was refined with anisotropic B parameters and riding H atoms. A comparison of the diffraction data and refinement statistics for recombinant thaumatin I with those for plant thaumatin I revealed no significant differences in the diffraction data. The R values for recombinant thaumatin I and plant thaumatin I (F(o) > 4sigma) were 9.11% and 9.91%, respectively, indicating the final model to be of good quality. Notably, the electron-density maps around Asn46 and Ser63, which differ between thaumatin variants, were significantly improved. Furthermore, a number of H atoms became visible in an OMIT map and could be assigned. The high-quality structure of recombinant thaumatin with H atoms should provide details about sweetness determinants in thaumatin and provide valuable insights into the mechanism of its interaction with taste receptors. High-resolution structure of the recombinant sweet-tasting protein thaumatin I.,Masuda T, Ohta K, Mikami B, Kitabatake N Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Jun 1;67(Pt, 6):652-8. Epub 2011 May 24. PMID:21636903[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|