7c09: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='7c09' size='340' side='right'caption='[[7c09]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='7c09' size='340' side='right'caption='[[7c09]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7c09]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7C09 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7C09 FirstGlance]. <br>
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7C09 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7C09 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7c09 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7c09 OCA], [https://pdbe.org/7c09 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7c09 RCSB], [https://www.ebi.ac.uk/pdbsum/7c09 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7c09 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7c09 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7c09 OCA], [https://pdbe.org/7c09 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7c09 RCSB], [https://www.ebi.ac.uk/pdbsum/7c09 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7c09 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A sample delivery system is one of the key parts of serial crystallography. It is the main limiting factor affecting the application of serial crystallography. At present, although a variety of useful sample delivery systems have been developed for serial crystallography, it still remains the focus of the field to further improve the performance and efficiency of sample delivery. In existing sample delivery technologies, samples are usually delivered in linear motion. Here we show that the samples can also be delivered using circular motion, which is a novel motion mode never tested before. In this paper, we report a microfluidic rotating-target sample delivery device, which is characterized by the circular motion of the samples, and verify the performance of the device at a synchrotron radiation facility. The microfluidic rotating-target sample delivery device consists of two parts: a microfluidic sample plate and a motion control system. Sample delivery is realized by rotating the microfluidic sample plate containing in situ grown crystals. This device offers significant advantages, including a very wide adjustable range of delivery speed, low background noise, and low sample consumption. Using the microfluidic rotating-target device, we carried out in situ serial crystallography experiments with lysozyme and proteinase K as model samples at the Shanghai Synchrotron Radiation Facility, and performed structural determination based on the serial crystallographic data. The results showed that the designed device is fully compatible with the synchrotron radiation facility, and the structure determination of proteins is successful using the serial crystallographic data obtained with the device.
A novel sample delivery system based on circular motion for in situ serial synchrotron crystallography.,Zhao FZ, Sun B, Yu L, Xiao QJ, Wang ZJ, Chen LL, Liang H, Wang QS, He JH, Yin DC Lab Chip. 2020 Oct 27;20(21):3888-3898. doi: 10.1039/d0lc00443j. PMID:32966481<ref>PMID:32966481</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7c09" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Gallus gallus]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Zhao FZ]]
[[Category: Zhao FZ]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA