8jsp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
Replacing page with ''''Unreleased structure''' The entry 8jsp is ON HOLD until Paper Publication Authors: Description: Category: Unreleased Structures'
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 8jsp is ON HOLD  until Paper Publication
==Ulotaront(SEP-363856)-bound Serotonin 1A (5-HT1A) receptor-Gi complex==
<StructureSection load='8jsp' size='340' side='right'caption='[[8jsp]], [[Resolution|resolution]] 3.65&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[8jsp]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8JSP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8JSP FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.65&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=UJL:1-[(7~{S})-5,7-dihydro-4~{H}-thieno[2,3-c]pyran-7-yl]-~{N}-methyl-methanamine'>UJL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8jsp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8jsp OCA], [https://pdbe.org/8jsp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8jsp RCSB], [https://www.ebi.ac.uk/pdbsum/8jsp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8jsp ProSAT]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis(1). They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways(2,3). Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders(4,5). However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT(1A)R in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Authors:  
Ligand recognition and G-protein coupling of trace amine receptor TAAR1.,Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, Shao Z Nature. 2023 Dec;624(7992):672-681. doi: 10.1038/s41586-023-06804-z. Epub 2023 , Nov 7. PMID:37935376<ref>PMID:37935376</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 8jsp" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Guo LL]]
[[Category: Shao ZH]]
[[Category: Shen SY]]
[[Category: Sun JP]]
[[Category: Xu Z]]
[[Category: Zhao C]]

Latest revision as of 12:56, 9 October 2024

Ulotaront(SEP-363856)-bound Serotonin 1A (5-HT1A) receptor-Gi complexUlotaront(SEP-363856)-bound Serotonin 1A (5-HT1A) receptor-Gi complex

Structural highlights

8jsp is a 5 chain structure with sequence from Homo sapiens and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.65Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis(1). They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways(2,3). Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders(4,5). However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT(1A)R in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.

Ligand recognition and G-protein coupling of trace amine receptor TAAR1.,Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, Shao Z Nature. 2023 Dec;624(7992):672-681. doi: 10.1038/s41586-023-06804-z. Epub 2023 , Nov 7. PMID:37935376[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, Shao Z. Ligand recognition and G protein coupling of trace amine receptor TAAR1. Nature. 2023 Nov 7. PMID:37935376 doi:10.1038/s41586-023-06804-z

8jsp, resolution 3.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA