2khs: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2khs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KHS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KHS FirstGlance]. <br> | <table><tr><td colspan='2'>[[2khs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KHS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KHS FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2khs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2khs OCA], [https://pdbe.org/2khs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2khs RCSB], [https://www.ebi.ac.uk/pdbsum/2khs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2khs ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2khs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2khs OCA], [https://pdbe.org/2khs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2khs RCSB], [https://www.ebi.ac.uk/pdbsum/2khs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2khs ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == |
Latest revision as of 08:36, 15 May 2024
Solution structure of SNase121:SNase(111-143) complexSolution structure of SNase121:SNase(111-143) complex
Structural highlights
FunctionNUC_STAAU Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe interactions necessary for stabilizing the folding of the N-terminal large beta-subdomain and the C-terminal small alpha-subdomain of staphylococcal nuclease (SNase) were investigated by an approach of fragment complementation. Two SNase fragments, namely, SNase121 and SNase(111-143) containing 1-121 and 111-143 residues, respectively, of native SNase, were used in this study since the sequences of the two fragments correspond to that of the beta- and alpha-subdomains of SNase. SNase121 is a largely unfolded fragment whereas SNase(111-143) is a structureless fragment. The recognition process and efficiency of complementation of SNase121 and SNase(111-143) fragments were studied by NMR and various biochemical and biophysical methods. SNase121 and SNase(111-143) can recognize each other and recover their native conformations on binding, restoring the active site and the ability to degrade DNA. The SNase121:SNase(111-143) complex showed a nuclease activity up to 30% that of native SNase. The final rigid structures of SNase121 and SNase(111-143) fragments having the folded native-like beta-subdomain and alpha-subdomain structures of SNase, respectively, in the complex form simultaneously with the complex stabilization. Studies with the mutant SNase121 and SNase(111-143) fragments reveal that the sequence elements which are essential for recognition and efficient complementation of the two fragments are also necessary for recovering the native-like interactions at the binding interface between them. The interfragment interactions that induce the structural complementation of SNase121 and SNase(111-143) likely reflect the tertiary interactions necessary to stabilize the folding of both beta- and alpha-subdomains in the native SNase. The native-like interactions between SNase121 and SNase(111-143) fragments induce the recovery of their native-like structures and the ability to degrade DNA.,Geng Y, Feng Y, Xie T, Shan L, Wang J Biochemistry. 2009 Sep 15;48(36):8692-703. PMID:19658434[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|