14-3-3 protein: Difference between revisions

Joel L. Sussman (talk | contribs)
No edit summary
Joel L. Sussman (talk | contribs)
No edit summary
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
The binding of 14-3-3 proteins to their target proteins can have diverse functional outcomes. It can either activate or inhibit the target protein, modulate its interactions with other proteins, protect it from degradation, or act as a scaffold for protein complex formation. By regulating the activity and localization of their target proteins, 14-3-3 proteins exert tight control over cellular signaling and contribute to the coordination of complex cellular processes.
The binding of 14-3-3 proteins to their target proteins can have diverse functional outcomes. It can either activate or inhibit the target protein, modulate its interactions with other proteins, protect it from degradation, or act as a scaffold for protein complex formation. By regulating the activity and localization of their target proteins, 14-3-3 proteins exert tight control over cellular signaling and contribute to the coordination of complex cellular processes.


The functions of 14-3-3 proteins are highly context-dependent and vary depending on the specific isoform, cellular location, and interacting partners. They have been implicated in numerous physiological and pathological processes, including neuronal development and function, cell cycle regulation, apoptosis, cancer progression, and neurodegenerative diseases.
These proteins are highly context-dependent and vary depending on the specific isoform, cellular location, and interacting partners. They have been implicated in numerous physiological and pathological processes, including neuronal development and function, cell cycle regulation, apoptosis, cancer progression, and neurodegenerative diseases.


Research on 14-3-3 proteins continues to uncover their intricate roles in cellular signaling and their involvement in various diseases. Understanding their interactions and regulatory mechanisms provides insights into fundamental cellular processes and offers potential avenues for therapeutic interventions.
Research on 14-3-3 proteins continues to uncover their intricate roles in cellular signaling and their involvement in various diseases. Understanding their interactions and regulatory mechanisms provides insights into fundamental cellular processes and offers potential avenues for therapeutic interventions.
== Structure ==
The 14-3-3 proteins exist as dimers, with each dimer composed of two identical or closely related subunits. There are seven isoforms of 14-3-3 proteins identified in mammals, labeled as alpha, beta, gamma, delta, epsilon, eta, and zeta. These isoforms share a high degree of sequence similarity but can have distinct functions and binding partners.


== Disease ==
== Disease ==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Alexander Berchansky, Joel L. Sussman