4rmw: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4rmw]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RMW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RMW FirstGlance]. <br> | <table><tr><td colspan='2'>[[4rmw]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RMW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RMW FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rmw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rmw OCA], [https://pdbe.org/4rmw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rmw RCSB], [https://www.ebi.ac.uk/pdbsum/4rmw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rmw ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rmw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rmw OCA], [https://pdbe.org/4rmw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rmw RCSB], [https://www.ebi.ac.uk/pdbsum/4rmw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rmw ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 20:52, 20 September 2023
Crystal structure of the D76A Beta-2 Microglobulin mutantCrystal structure of the D76A Beta-2 Microglobulin mutant
Structural highlights
DiseaseB2MG_HUMAN Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] FunctionB2MG_HUMAN Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Publication Abstract from PubMedSpontaneous aggregation of folded and soluble native proteins in vivo is still a poorly understood process. A prototypic example is the D76N mutant of beta-2 microglobulin (beta2m) that displays an aggressive aggregation propensity. Here we investigate the dynamics of beta2m by X-ray crystallography, solid-state NMR, and molecular dynamics simulations to unveil the effects of the D76N mutation. Taken together, our data highlight the presence of minor disordered substates in crystalline beta2m. The destabilization of the outer strands of D76N beta2m accounts for the increased aggregation propensity. Furthermore, the computational modeling reveals a network of interactions with residue D76 as a keystone: this model allows predicting the stability of several point mutants. Overall, our study shows how the study of intrinsic dynamics in crystallo can provide crucial answers on protein stability and aggregation propensity. The comprehensive approach here presented may well be suited for the study of other folded amyloidogenic proteins. Conformational dynamics in crystals reveal the molecular bases for D76N beta-2 microglobulin aggregation propensity.,Le Marchand T, de Rosa M, Salvi N, Sala BM, Andreas LB, Barbet-Massin E, Sormanni P, Barbiroli A, Porcari R, Sousa Mota C, de Sanctis D, Bolognesi M, Emsley L, Bellotti V, Blackledge M, Camilloni C, Pintacuda G, Ricagno S Nat Commun. 2018 Apr 25;9(1):1658. doi: 10.1038/s41467-018-04078-y. PMID:29695721[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|