8dfs: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8dfs]] is a 13 chain structure with sequence from [https://en.wikipedia.org/wiki/Desulfovibrio_vulgaris_str._Hildenborough Desulfovibrio vulgaris str. Hildenborough] and [https://en.wikipedia.org/wiki/Pseudomonas_virus_D3112 Pseudomonas virus D3112]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DFS FirstGlance]. <br> | <table><tr><td colspan='2'>[[8dfs]] is a 13 chain structure with sequence from [https://en.wikipedia.org/wiki/Desulfovibrio_vulgaris_str._Hildenborough Desulfovibrio vulgaris str. Hildenborough] and [https://en.wikipedia.org/wiki/Pseudomonas_virus_D3112 Pseudomonas virus D3112]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DFS FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dfs OCA], [https://pdbe.org/8dfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dfs RCSB], [https://www.ebi.ac.uk/pdbsum/8dfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dfs ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dfs OCA], [https://pdbe.org/8dfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dfs RCSB], [https://www.ebi.ac.uk/pdbsum/8dfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dfs ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | |||
Type I CRISPR-Cas systems employ multi-subunit Cascade effector complexes to target foreign nucleic acids for destruction. Here, we present structures of D. vulgaris type I-C Cascade at various stages of double-stranded (ds)DNA target capture, revealing mechanisms that underpin PAM recognition and Cascade allosteric activation. We uncover an interesting mechanism of non-target strand (NTS) DNA stabilization via stacking interactions with the "belly" subunits, securing the NTS in place. This "molecular seatbelt" mechanism facilitates efficient R-loop formation and prevents dsDNA reannealing. Additionally, we provide structural insights into how two anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking PAM scanning. These observations form a structural basis for directional R-loop formation and reveal how different Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity. | |||
Structural snapshots of R-loop formation by a type I-C CRISPR Cascade.,O'Brien RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW Mol Cell. 2023 Mar 2;83(5):746-758.e5. doi: 10.1016/j.molcel.2023.01.024. Epub , 2023 Feb 16. PMID:36805026<ref>PMID:36805026</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 8dfs" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Antibody 3D structures|Antibody 3D structures]] | *[[Antibody 3D structures|Antibody 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 08:21, 12 June 2024
type I-C Cascade bound to AcrIF2type I-C Cascade bound to AcrIF2
Structural highlights
Publication Abstract from PubMedType I CRISPR-Cas systems employ multi-subunit Cascade effector complexes to target foreign nucleic acids for destruction. Here, we present structures of D. vulgaris type I-C Cascade at various stages of double-stranded (ds)DNA target capture, revealing mechanisms that underpin PAM recognition and Cascade allosteric activation. We uncover an interesting mechanism of non-target strand (NTS) DNA stabilization via stacking interactions with the "belly" subunits, securing the NTS in place. This "molecular seatbelt" mechanism facilitates efficient R-loop formation and prevents dsDNA reannealing. Additionally, we provide structural insights into how two anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking PAM scanning. These observations form a structural basis for directional R-loop formation and reveal how different Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity. Structural snapshots of R-loop formation by a type I-C CRISPR Cascade.,O'Brien RE, Bravo JPK, Ramos D, Hibshman GN, Wright JT, Taylor DW Mol Cell. 2023 Mar 2;83(5):746-758.e5. doi: 10.1016/j.molcel.2023.01.024. Epub , 2023 Feb 16. PMID:36805026[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|