7zra: Difference between revisions

No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7zra]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Lama_glama Lama glama]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ZRA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ZRA FirstGlance]. <br>
<table><tr><td colspan='2'>[[7zra]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Lama_glama Lama glama]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ZRA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ZRA FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7zra FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7zra OCA], [https://pdbe.org/7zra PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7zra RCSB], [https://www.ebi.ac.uk/pdbsum/7zra PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7zra ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7zra FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7zra OCA], [https://pdbe.org/7zra PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7zra RCSB], [https://www.ebi.ac.uk/pdbsum/7zra PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7zra ProSAT]</span></td></tr>
</table>
</table>
Line 13: Line 14:
Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.
Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.


Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway.,Maso L, Vascon F, Chinellato M, Goormaghtigh F, Bellio P, Campagnaro E, Van Melderen L, Ruzzene M, Pardon E, Angelini A, Celenza G, Steyaert J, Tondi D, Cendron L Structure. 2022 Oct 6. pii: S0969-2126(22)00357-4. doi:, 10.1016/j.str.2022.09.004. PMID:36240773<ref>PMID:36240773</ref>
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway.,Maso L, Vascon F, Chinellato M, Goormaghtigh F, Bellio P, Campagnaro E, Van Melderen L, Ruzzene M, Pardon E, Angelini A, Celenza G, Steyaert J, Tondi D, Cendron L Structure. 2022 Nov 3;30(11):1479-1493.e9. doi: 10.1016/j.str.2022.09.004. Epub , 2022 Oct 13. PMID:36240773<ref>PMID:36240773</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA