7z8h: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7z8h]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z8H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z8H FirstGlance]. <br> | <table><tr><td colspan='2'>[[7z8h]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z8H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z8H FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.41Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z8h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z8h OCA], [https://pdbe.org/7z8h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z8h RCSB], [https://www.ebi.ac.uk/pdbsum/7z8h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z8h ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z8h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z8h OCA], [https://pdbe.org/7z8h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z8h RCSB], [https://www.ebi.ac.uk/pdbsum/7z8h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z8h ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/DYHC1_HUMAN DYHC1_HUMAN] Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074).<ref>PMID:27462074</ref> | [https://www.uniprot.org/uniprot/DYHC1_HUMAN DYHC1_HUMAN] Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074).<ref>PMID:27462074</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor(1-3). Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour(4-6). Different coiled-coil adaptors are linked to different cargos(7,8), and some share motifs known to contact sites on dynein and dynactin(4,9-13). There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos. | |||
Structure of dynein-dynactin on microtubules shows tandem adaptor binding.,Chaaban S, Carter AP Nature. 2022 Oct;610(7930):212-216. doi: 10.1038/s41586-022-05186-y. Epub 2022 , Sep 7. PMID:36071160<ref>PMID:36071160</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7z8h" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Dynein 3D structures|Dynein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> |
Latest revision as of 09:40, 24 July 2024
Cytoplasmic dynein-1 motor domain AAA1, AAA2, and AAA3 subunitsCytoplasmic dynein-1 motor domain AAA1, AAA2, and AAA3 subunits
Structural highlights
DiseaseDYHC1_HUMAN Autosomal dominant childhood-onset proximal spinal muscular atrophy without contractures;Autosomal dominant non-syndromic intellectual disability;Autosomal dominant Charcot-Marie-Tooth disease type 2O. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. FunctionDYHC1_HUMAN Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074).[1] Publication Abstract from PubMedCytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor(1-3). Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour(4-6). Different coiled-coil adaptors are linked to different cargos(7,8), and some share motifs known to contact sites on dynein and dynactin(4,9-13). There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos. Structure of dynein-dynactin on microtubules shows tandem adaptor binding.,Chaaban S, Carter AP Nature. 2022 Oct;610(7930):212-216. doi: 10.1038/s41586-022-05186-y. Epub 2022 , Sep 7. PMID:36071160[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|