7unb: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7unb]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Plasmodium_falciparum Plasmodium falciparum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UNB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UNB FirstGlance]. <br> | <table><tr><td colspan='2'>[[7unb]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Plasmodium_falciparum Plasmodium falciparum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UNB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UNB FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.18Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7unb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7unb OCA], [https://pdbe.org/7unb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7unb RCSB], [https://www.ebi.ac.uk/pdbsum/7unb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7unb ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7unb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7unb OCA], [https://pdbe.org/7unb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7unb RCSB], [https://www.ebi.ac.uk/pdbsum/7unb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7unb ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/P4548_PLAF7 P4548_PLAF7] Gametocyte surface protein required for male fertility. | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25 degrees C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target. | Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25 degrees C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target. | ||
Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses.,McLeod B, Mabrouk MT, Miura K, Ravichandran R, Kephart S, Hailemariam S, Pham TP, Semesi A, Kucharska I, Kundu P, Huang WC, Johnson M, Blackstone A, Pettie D, Murphy M, Kraft JC, Leaf EM, Jiao Y, van de Vegte-Bolmer M, van Gemert GJ, Ramjith J, King CR, MacGill RS, Wu Y, Lee KK, Jore MM, King NP, Lovell JF, Julien JP Immunity. 2022 | Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses.,McLeod B, Mabrouk MT, Miura K, Ravichandran R, Kephart S, Hailemariam S, Pham TP, Semesi A, Kucharska I, Kundu P, Huang WC, Johnson M, Blackstone A, Pettie D, Murphy M, Kraft JC, Leaf EM, Jiao Y, van de Vegte-Bolmer M, van Gemert GJ, Ramjith J, King CR, MacGill RS, Wu Y, Lee KK, Jore MM, King NP, Lovell JF, Julien JP Immunity. 2022 Sep 13;55(9):1680-1692.e8. doi: 10.1016/j.immuni.2022.07.015. Epub , 2022 Aug 16. PMID:35977542<ref>PMID:35977542</ref> | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 7unb" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 7unb" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Monoclonal Antibodies 3D structures|Monoclonal Antibodies 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> |