7xp4: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The entry | ==Cryo-EM structure of a class T GPCR in apo state== | ||
<StructureSection load='7xp4' size='340' side='right'caption='[[7xp4]], [[Resolution|resolution]] 3.01Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7xp4]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetivibrio_thermocellus Acetivibrio thermocellus] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7XP4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7XP4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.01Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7xp4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7xp4 OCA], [https://pdbe.org/7xp4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7xp4 RCSB], [https://www.ebi.ac.uk/pdbsum/7xp4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7xp4 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/GNAS2_HUMAN GNAS2_HUMAN] Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/GNAS2_HUMAN GNAS2_HUMAN] Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).<ref>PMID:12391161</ref> <ref>PMID:17110384</ref> <ref>PMID:21488135</ref> <ref>PMID:26206488</ref> <ref>PMID:8702665</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Taste sensing is a sophisticated chemosensory process, and bitter taste perception is mediated by type 2 taste receptors (TAS2Rs), or class T G protein-coupled receptors. Understanding the detailed molecular mechanisms behind taste sensation is hindered by a lack of experimental receptor structures. Here, we report the cryo-electron microscopy structures of human TAS2R46 complexed with chimeric mini-G protein gustducin, in both strychnine-bound and apo forms. Several features of TAS2R46 are disclosed, including distinct receptor structures that compare with known GPCRs, a new "toggle switch," activation-related motifs, and precoupling with mini-G protein gustducin. Furthermore, the dynamic extracellular and more-static intracellular parts of TAS2R46 suggest possible diverse ligand-recognition and activation processes. This study provides a basis for further exploration of other bitter taste receptors and their therapeutic applications. | |||
Structural basis for strychnine activation of human bitter taste receptor TAS2R46.,Xu W, Wu L, Liu S, Liu X, Cao X, Zhou C, Zhang J, Fu Y, Guo Y, Wu Y, Tan Q, Wang L, Liu J, Jiang L, Fan Z, Pei Y, Yu J, Cheng J, Zhao S, Hao X, Liu ZJ, Hua T Science. 2022 Sep 16;377(6612):1298-1304. doi: 10.1126/science.abo1633. Epub 2022 , Sep 15. PMID:36108005<ref>PMID:36108005</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7xp4" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Transducin 3D structures|Transducin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Acetivibrio thermocellus]] | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Hua T]] | |||
[[Category: Liu ZJ]] | |||
[[Category: Wu LJ]] | |||
[[Category: Xu WX]] |