1his: Difference between revisions

No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1his.jpg|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1his", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1his|  PDB=1his  |  SCENE=  }}
'''STRUCTURE AND DYNAMICS OF DES-PENTAPEPTIDE-INSULIN IN SOLUTION: THE MOLTEN-GLOBULE HYPOTHESIS'''


==Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis.==
<StructureSection load='1his' size='340' side='right'caption='[[1his]]' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1his]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HIS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HIS FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 15 models</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1his FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1his OCA], [https://pdbe.org/1his PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1his RCSB], [https://www.ebi.ac.uk/pdbsum/1his PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1his ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref>  Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref>  Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref>  Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
== Function ==
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Structures of insulin in different crystal forms exhibit significant local and nonlocal differences, including correlated displacement of elements of secondary structure. Here we describe the solution structure and dynamics of a monomeric insulin analogue, des-pentapeptide-(B26-B30)-insulin (DPI), as determined by two-dimensional NMR spectroscopy and distance geometry/restrained molecular dynamics (DG/RMD). Although the solution structure of DPI exhibits a general similarity to its crystal structure, individual DG/RMD structures in the NMR ensemble differ by rigid-body displacements of alpha-helices that span the range of different crystal forms. These results suggest that DPI exists as a partially folded state formed by coalescence of distinct alpha-helix-associated microdomains. The physical reality of this model is investigated by comparison of the observed two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy (NOESY) spectrum with that predicted from crystal and DG/RMD structures. The observed NOESY spectrum contains fewer tertiary contacts than predicted by any single simulation, but it matches their shared features; such "ensemble correspondence" is likely to reflect the effect of protein dynamics on observed NOE intensities. We propose (i) that the folded state of DPI is analogous to that of a compact protein-folding intermediate rather than a conventional native state and (ii) that the molten state is the biologically active species. This proposal (the molten-globule hypothesis) leads to testable thermodynamic predictions and has general implications for protein design.


==Overview==
Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis.,Hua QX, Kochoyan M, Weiss MA Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2379-83. PMID:1549601<ref>PMID:1549601</ref>
Structures of insulin in different crystal forms exhibit significant local and nonlocal differences, including correlated displacement of elements of secondary structure. Here we describe the solution structure and dynamics of a monomeric insulin analogue, des-pentapeptide-(B26-B30)-insulin (DPI), as determined by two-dimensional NMR spectroscopy and distance geometry/restrained molecular dynamics (DG/RMD). Although the solution structure of DPI exhibits a general similarity to its crystal structure, individual DG/RMD structures in the NMR ensemble differ by rigid-body displacements of alpha-helices that span the range of different crystal forms. These results suggest that DPI exists as a partially folded state formed by coalescence of distinct alpha-helix-associated microdomains. The physical reality of this model is investigated by comparison of the observed two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy (NOESY) spectrum with that predicted from crystal and DG/RMD structures. The observed NOESY spectrum contains fewer tertiary contacts than predicted by any single simulation, but it matches their shared features; such "ensemble correspondence" is likely to reflect the effect of protein dynamics on observed NOE intensities. We propose (i) that the folded state of DPI is analogous to that of a compact protein-folding intermediate rather than a conventional native state and (ii) that the molten state is the biologically active species. This proposal (the molten-globule hypothesis) leads to testable thermodynamic predictions and has general implications for protein design.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1HIS is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HIS OCA].
</div>
<div class="pdbe-citations 1his" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis., Hua QX, Kochoyan M, Weiss MA, Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2379-83. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/1549601 1549601]
*[[Insulin 3D Structures|Insulin 3D Structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Hua, Q X.]]
[[Category: Hua QX]]
[[Category: Kochoyan, M.]]
[[Category: Kochoyan M]]
[[Category: Weiss, M A.]]
[[Category: Weiss MA]]
[[Category: Hormone]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May  2 18:53:07 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA