3pe9: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3pe9' size='340' side='right'caption='[[3pe9]], [[Resolution|resolution]] 1.69&Aring;' scene=''>
<StructureSection load='3pe9' size='340' side='right'caption='[[3pe9]], [[Resolution|resolution]] 1.69&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3pe9]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"ruminiclostridium_thermocellum"_(viljoen_et_al._1926)_yutin_and_galperin_2013 "ruminiclostridium thermocellum" (viljoen et al. 1926) yutin and galperin 2013]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PE9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PE9 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3pe9]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetivibrio_thermocellus Acetivibrio thermocellus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PE9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PE9 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.69&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3pdd|3pdd]], [[3pdg|3pdg]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Cthe_0413 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1515 "Ruminiclostridium thermocellum" (Viljoen et al. 1926) Yutin and Galperin 2013])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3pe9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pe9 OCA], [https://pdbe.org/3pe9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3pe9 RCSB], [https://www.ebi.ac.uk/pdbsum/3pe9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3pe9 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3pe9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pe9 OCA], [https://pdbe.org/3pe9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3pe9 RCSB], [https://www.ebi.ac.uk/pdbsum/3pe9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3pe9 ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Function ==
== Publication Abstract from PubMed ==
[https://www.uniprot.org/uniprot/A3DCH2_ACET2 A3DCH2_ACET2]
The efficient deconstruction of lignocellulosic biomass remains a significant barrier to the commercialization of biofuels. Whereas most commercial plant cell-wall-degrading enzyme preparations used today are derived from fungi, the cellulosomal enzyme system from Clostridium thermocellum is an equally effective catalyst, yet of considerably different structure. A key difference between fungal enzyme systems and cellulosomal enzyme systems is that cellulosomal enzyme systems utilize self-assembled scaffolded multimodule enzymes to deconstruct biomass. Here, the possible function of the X1 modules in the complex multimodular enzyme system cellobiohydrolase A (CbhA) from C. thermocellum is explored. The crystal structures of the two X1 modules from C. thermocellum CbhA have been solved individually and together as one construct. The role that calcium may play in the stability of the X1 modules has also been investigated, as well as the possibility that they interact with each other. Furthermore, the results show that whereas the X1 modules do not seem to act as cellulose disruptors, they do aid in the thermostability of the CbhA complex, effectively allowing it to deconstruct cellulose at a higher temperature.
 
Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex.,Brunecky R, Alahuhta M, Bomble YJ, Xu Q, Baker JO, Ding SY, Himmel ME, Lunin VV Acta Crystallogr D Biol Crystallogr. 2012 Mar;68(Pt 3):292-9. Epub 2012 Feb 14. PMID:22349231<ref>PMID:22349231</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3pe9" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Acetivibrio thermocellus]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Alahuhta, P M]]
[[Category: Alahuhta PM]]
[[Category: Lunin, V V]]
[[Category: Lunin VV]]
[[Category: Beta-sandwich]]
[[Category: Cbha]]
[[Category: Cellulosome]]
[[Category: Unknown function]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA