7uxk: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of CDK2 in complex with FP24322, a Helicon Polypeptide== | |||
<StructureSection load='7uxk' size='340' side='right'caption='[[7uxk]], [[Resolution|resolution]] 2.63Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7uxk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UXK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UXK FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.63Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=WHL:N,N-(1,4-phenylene)diacetamide'>WHL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uxk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uxk OCA], [https://pdbe.org/7uxk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uxk RCSB], [https://www.ebi.ac.uk/pdbsum/7uxk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uxk ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The alpha-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable alpha-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of alpha-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering alpha-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized alpha-helix recognition sites, and restricting the starting chemical matter to those known alpha-helical binders. Here, we report a general and rapid screening method to empirically map the alpha-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated alpha-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct alpha-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets. | |||
De novo mapping of alpha-helix recognition sites on protein surfaces using unbiased libraries.,Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG 4th, Olsen TJ, Brennan MJ, Verdine GL, McGee JH Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2210435119. doi: , 10.1073/pnas.2210435119. Epub 2022 Dec 19. PMID:36534810<ref>PMID:36534810</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7uxk" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Synthetic construct]] | |||
[[Category: Agarwal S]] | |||
[[Category: Li K]] | |||
[[Category: McGee J]] | |||
[[Category: Thomson T]] | |||
[[Category: Tokareva O]] | |||
[[Category: Verdine G]] | |||
[[Category: Wahl S]] |
Latest revision as of 12:15, 17 October 2024
Structure of CDK2 in complex with FP24322, a Helicon PolypeptideStructure of CDK2 in complex with FP24322, a Helicon Polypeptide
Structural highlights
Publication Abstract from PubMedThe alpha-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable alpha-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of alpha-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering alpha-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized alpha-helix recognition sites, and restricting the starting chemical matter to those known alpha-helical binders. Here, we report a general and rapid screening method to empirically map the alpha-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated alpha-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct alpha-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets. De novo mapping of alpha-helix recognition sites on protein surfaces using unbiased libraries.,Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG 4th, Olsen TJ, Brennan MJ, Verdine GL, McGee JH Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2210435119. doi: , 10.1073/pnas.2210435119. Epub 2022 Dec 19. PMID:36534810[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|