3d39: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3d39' size='340' side='right'caption='[[3d39]], [[Resolution|resolution]] 2.81Å' scene=''> | <StructureSection load='3d39' size='340' side='right'caption='[[3d39]], [[Resolution|resolution]] 2.81Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3d39]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3d39]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3D39 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3D39 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.81Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PFF:4-FLUORO-L-PHENYLALANINE'>PFF</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3d39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3d39 OCA], [https://pdbe.org/3d39 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3d39 RCSB], [https://www.ebi.ac.uk/pdbsum/3d39 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3d39 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3d39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3d39 OCA], [https://pdbe.org/3d39 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3d39 RCSB], [https://www.ebi.ac.uk/pdbsum/3d39 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3d39 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).<ref>PMID:16731854</ref> <ref>PMID:18802479</ref> <ref>PMID:22245737</ref> <ref>PMID:22522618</ref> Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).<ref>PMID:10746785</ref> <ref>PMID:18953350</ref> Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.<ref>PMID:30872678</ref> Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.<ref>PMID:1728143</ref> | |||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).<ref>PMID:10449296</ref> <ref>PMID:12138174</ref> <ref>PMID:12393434</ref> <ref>PMID:12796775</ref> <ref>PMID:1402688</ref> <ref>PMID:15893615</ref> <ref>PMID:17079320</ref> <ref>PMID:17189421</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:19543285</ref> <ref>PMID:20364150</ref> <ref>PMID:21498667</ref> <ref>PMID:24192765</ref> <ref>PMID:24395804</ref> <ref>PMID:2456340</ref> <ref>PMID:25880248</ref> <ref>PMID:26929325</ref> <ref>PMID:27049119</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7504010</ref> <ref>PMID:7506728</ref> <ref>PMID:7679507</ref> <ref>PMID:7694806</ref> <ref>PMID:9862734</ref> Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).<ref>PMID:1402688</ref> <ref>PMID:17189421</ref> <ref>PMID:18779413</ref> <ref>PMID:19177349</ref> <ref>PMID:20364150</ref> <ref>PMID:24395804</ref> <ref>PMID:25880248</ref> <ref>PMID:26758806</ref> <ref>PMID:30530481</ref> <ref>PMID:7504010</ref> Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.<ref>PMID:11502003</ref> <ref>PMID:12138174</ref> <ref>PMID:12796775</ref> <ref>PMID:17079320</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:20619457</ref> <ref>PMID:22245737</ref> <ref>PMID:26929325</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7694806</ref> <ref>PMID:7935798</ref> <ref>PMID:8630735</ref> <ref>PMID:8805302</ref> <ref>PMID:8906788</ref> <ref>PMID:9177355</ref> Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).<ref>PMID:19543285</ref> <ref>PMID:21943705</ref> <ref>PMID:2456340</ref> <ref>PMID:27049119</ref> <ref>PMID:7504010</ref> <ref>PMID:7679507</ref> <ref>PMID:9862734</ref> Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).<ref>PMID:10449296</ref> <ref>PMID:32887977</ref> Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).<ref>PMID:12393434</ref> <ref>PMID:17182537</ref> <ref>PMID:18502829</ref> <ref>PMID:20844028</ref> <ref>PMID:24192765</ref> <ref>PMID:9047241</ref> Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.<ref>PMID:15893615</ref> Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.<ref>PMID:8622959</ref> Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.<ref>PMID:1448153</ref> <ref>PMID:1448154</ref> <ref>PMID:2784196</ref> Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.<ref>PMID:21498667</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 37: | Line 35: | ||
*[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | ||
*[[MHC 3D structures|MHC 3D structures]] | *[[MHC 3D structures|MHC 3D structures]] | ||
*[[MHC I 3D structures|MHC I 3D structures]] | |||
*[[T-cell receptor 3D structures|T-cell receptor 3D structures]] | *[[T-cell receptor 3D structures|T-cell receptor 3D structures]] | ||
== References == | == References == | ||
Line 42: | Line 41: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Baker | [[Category: Baker BM]] | ||
[[Category: Borbulevych | [[Category: Borbulevych OY]] | ||
[[Category: Clemens | [[Category: Clemens JR]] | ||
Latest revision as of 15:39, 30 August 2023
The complex between TCR A6 and human Class I MHC HLA-A2 with the modified HTLV-1 TAX (Y5(4-fluoroPhenylalanine)) peptideThe complex between TCR A6 and human Class I MHC HLA-A2 with the modified HTLV-1 TAX (Y5(4-fluoroPhenylalanine)) peptide
Structural highlights
DiseaseHLAA_HUMAN Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).[1] [2] [3] [4] Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).[5] [6] Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.[7] Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.[8] FunctionHLAA_HUMAN Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).[35] [36] [37] [38] [39] [40] [41] [42] [43] [44] Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.[45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).[62] [63] [64] [65] [66] [67] [68] Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).[69] [70] Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[71] Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).[72] [73] [74] [75] [76] [77] Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.[78] Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.[79] Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[80] Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.[81] [82] [83] Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.[84] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide-MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax(11-19)] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner.,Piepenbrink KH, Borbulevych OY, Sommese RF, Clemens J, Armstrong KM, Desmond C, Do P, Baker BM Biochem J. 2009 Oct 12;423(3):353-61. PMID:19698083[85] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|