7oxd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Crystal structure of Scytonema hofmanni transposition protein TniQ==
==Crystal structure of Scytonema hofmanni transposition protein TniQ==
<StructureSection load='7oxd' size='340' side='right'caption='[[7oxd]]' scene=''>
<StructureSection load='7oxd' size='340' side='right'caption='[[7oxd]], [[Resolution|resolution]] 1.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OXD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OXD FirstGlance]. <br>
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OXD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OXD FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oxd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oxd OCA], [https://pdbe.org/7oxd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oxd RCSB], [https://www.ebi.ac.uk/pdbsum/7oxd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oxd ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oxd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oxd OCA], [https://pdbe.org/7oxd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oxd RCSB], [https://www.ebi.ac.uk/pdbsum/7oxd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oxd ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements(1). However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion(2-7). Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ(7), but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.
Target site selection and remodelling by type V CRISPR-transposon systems.,Querques I, Schmitz M, Oberli S, Chanez C, Jinek M Nature. 2021 Nov;599(7885):497-502. doi: 10.1038/s41586-021-04030-z. Epub 2021, Nov 10. PMID:34759315<ref>PMID:34759315</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7oxd" style="background-color:#fffaf0;"></div>
==See Also==
*[[Transposase 3D structures|Transposase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Latest revision as of 09:14, 19 June 2024

Crystal structure of Scytonema hofmanni transposition protein TniQCrystal structure of Scytonema hofmanni transposition protein TniQ

Structural highlights

Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements(1). However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion(2-7). Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ(7), but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.

Target site selection and remodelling by type V CRISPR-transposon systems.,Querques I, Schmitz M, Oberli S, Chanez C, Jinek M Nature. 2021 Nov;599(7885):497-502. doi: 10.1038/s41586-021-04030-z. Epub 2021, Nov 10. PMID:34759315[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Querques I, Schmitz M, Oberli S, Chanez C, Jinek M. Target site selection and remodelling by type V CRISPR-transposon systems. Nature. 2021 Nov;599(7885):497-502. doi: 10.1038/s41586-021-04030-z. Epub 2021, Nov 10. PMID:34759315 doi:http://dx.doi.org/10.1038/s41586-021-04030-z

7oxd, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA