7sc1: Difference between revisions
m Protected "7sc1" [edit=sysop:move=sysop] |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, R40-1G8== | ||
<StructureSection load='7sc1' size='340' side='right'caption='[[7sc1]], [[Resolution|resolution]] 3.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7sc1]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SC1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SC1 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7sc1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7sc1 OCA], [https://pdbe.org/7sc1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7sc1 RCSB], [https://www.ebi.ac.uk/pdbsum/7sc1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7sc1 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SPIKE_SARS2 SPIKE_SARS2] attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099]<ref>PMID:32075877</ref> <ref>PMID:32142651</ref> <ref>PMID:32155444</ref> mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection. | |||
Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers.,Vanshylla K, Fan C, Wunsch M, Poopalasingam N, Meijers M, Kreer C, Kleipass F, Ruchnewitz D, Ercanoglu MS, Gruell H, Munn F, Pohl K, Janicki H, Nolden T, Bartl S, Stein SC, Augustin M, Dewald F, Gieselmann L, Schommers P, Schulz TF, Sander LE, Koch M, Luksza M, Lassig M, Bjorkman PJ, Klein F Cell Host Microbe. 2022 Jan 12;30(1):69-82.e10. doi: 10.1016/j.chom.2021.12.010. , Epub 2021 Dec 18. PMID:34973165<ref>PMID:34973165</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Bjorkman | <div class="pdbe-citations 7sc1" style="background-color:#fffaf0;"></div> | ||
[[Category: Fan | |||
==See Also== | |||
*[[Antibody 3D structures|Antibody 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Severe acute respiratory syndrome coronavirus 2]] | |||
[[Category: Bjorkman PJ]] | |||
[[Category: Fan C]] |
Latest revision as of 09:46, 21 November 2024
Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, R40-1G8Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, R40-1G8
Structural highlights
FunctionSPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] Publication Abstract from PubMedA fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection. Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers.,Vanshylla K, Fan C, Wunsch M, Poopalasingam N, Meijers M, Kreer C, Kleipass F, Ruchnewitz D, Ercanoglu MS, Gruell H, Munn F, Pohl K, Janicki H, Nolden T, Bartl S, Stein SC, Augustin M, Dewald F, Gieselmann L, Schommers P, Schulz TF, Sander LE, Koch M, Luksza M, Lassig M, Bjorkman PJ, Klein F Cell Host Microbe. 2022 Jan 12;30(1):69-82.e10. doi: 10.1016/j.chom.2021.12.010. , Epub 2021 Dec 18. PMID:34973165[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|