2osc: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='2osc' size='340' side='right'caption='[[2osc]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='2osc' size='340' side='right'caption='[[2osc]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2osc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OSC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OSC FirstGlance]. <br>
<table><tr><td colspan='2'>[[2osc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OSC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OSC FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MUH:N-{4-METHYL-3-[(3-PYRIMIDIN-4-YLPYRIDIN-2-YL)AMINO]PHENYL}-3-(TRIFLUOROMETHYL)BENZAMIDE'>MUH</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2oo8|2oo8]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MUH:N-{4-METHYL-3-[(3-PYRIMIDIN-4-YLPYRIDIN-2-YL)AMINO]PHENYL}-3-(TRIFLUOROMETHYL)BENZAMIDE'>MUH</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TEK, TIE2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2osc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2osc OCA], [https://pdbe.org/2osc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2osc RCSB], [https://www.ebi.ac.uk/pdbsum/2osc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2osc ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2osc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2osc OCA], [https://pdbe.org/2osc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2osc RCSB], [https://www.ebi.ac.uk/pdbsum/2osc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2osc ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN]] Defects in TEK are a cause of dominantly inherited venous malformations (VMCM) [MIM:[https://omim.org/entry/600195 600195]]; an error of vascular morphogenesis characterized by dilated, serpiginous channels.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref> <ref>PMID:8980225</ref> <ref>PMID:10369874</ref> <ref>PMID:19888299</ref>  Note=May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref>
[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN] Defects in TEK are a cause of dominantly inherited venous malformations (VMCM) [MIM:[https://omim.org/entry/600195 600195]; an error of vascular morphogenesis characterized by dilated, serpiginous channels.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref> <ref>PMID:8980225</ref> <ref>PMID:10369874</ref> <ref>PMID:19888299</ref>  Note=May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN]] Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.<ref>PMID:9204896</ref> <ref>PMID:12816861</ref> <ref>PMID:15284220</ref> <ref>PMID:14665640</ref> <ref>PMID:15851516</ref> <ref>PMID:18425120</ref> <ref>PMID:18425119</ref> <ref>PMID:19223473</ref> <ref>PMID:18366015</ref> <ref>PMID:20651738</ref>
[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.<ref>PMID:9204896</ref> <ref>PMID:12816861</ref> <ref>PMID:15284220</ref> <ref>PMID:14665640</ref> <ref>PMID:15851516</ref> <ref>PMID:18425120</ref> <ref>PMID:18425119</ref> <ref>PMID:19223473</ref> <ref>PMID:18366015</ref> <ref>PMID:20651738</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 24: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2osc ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2osc ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A novel class of selective Tie-2 inhibitors was derived from a multi-kinase inhibitor 1. By reversing the amide connectivity and incorporating aminotriazine or aminopyridine hinge-binding moieties, excellent Tie-2 potency and KDR selectivity could be achieved with 3-substituted terminal aryl rings. X-ray co-crystal structure analysis aided inhibitor design. This series was evaluated on the basis of potency, selectivity, and rat pharmacokinetic parameters.
Synthesis, structural analysis, and SAR studies of triazine derivatives as potent, selective Tie-2 inhibitors.,Hodous BL, Geuns-Meyer SD, Hughes PE, Albrecht BK, Bellon S, Caenepeel S, Cee VJ, Chaffee SC, Emery M, Fretland J, Gallant P, Gu Y, Johnson RE, Kim JL, Long AM, Morrison M, Olivieri PR, Patel VF, Polverino A, Rose P, Wang L, Zhao H Bioorg Med Chem Lett. 2007 May 15;17(10):2886-9. Epub 2007 Feb 25. PMID:17350837<ref>PMID:17350837</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2osc" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Bellon SF]]
[[Category: Bellon, S F]]
[[Category: Kim J]]
[[Category: Kim, J]]
[[Category: Kinase domain tie-2]]
[[Category: Transferase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA