1h81: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1h81]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Zea_mays Zea mays]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H81 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1H81 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1h81]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Zea_mays Zea mays]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H81 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1H81 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FCA:ALPHA-D-FUCOSE'>FCA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FCA:ALPHA-D-FUCOSE'>FCA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1h81 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h81 OCA], [https://pdbe.org/1h81 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1h81 RCSB], [https://www.ebi.ac.uk/pdbsum/1h81 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1h81 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1h81 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h81 OCA], [https://pdbe.org/1h81 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1h81 RCSB], [https://www.ebi.ac.uk/pdbsum/1h81 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1h81 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/PAO1_MAIZE PAO1_MAIZE] Flavoenzyme involved in polyamine back-conversion (PubMed:16331971, Ref.4). Catalyzes the oxidation of the secondary amino group of polyamines, such as spermine, spermidine and their acetyl derivatives (PubMed:16331971, Ref.4). Plays an important role in the regulation of polyamine intracellular concentration (Probable).<ref>PMID:16331971</ref> <ref>PMID:16331971</ref> <ref>PMID:16331971</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 16: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h8/1h81_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h8/1h81_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 38: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Zea mays]] | [[Category: Zea mays]] | ||
[[Category: Angelini | [[Category: Angelini R]] | ||
[[Category: Ascenzi | [[Category: Ascenzi P]] | ||
[[Category: Binda | [[Category: Binda C]] | ||
[[Category: Coda | [[Category: Coda A]] | ||
[[Category: Federico | [[Category: Federico R]] | ||
[[Category: Mattevi | [[Category: Mattevi A]] | ||
Latest revision as of 03:02, 21 November 2024
STRUCTURE OF POLYAMINE OXIDASE IN THE REDUCED STATESTRUCTURE OF POLYAMINE OXIDASE IN THE REDUCED STATE
Structural highlights
FunctionPAO1_MAIZE Flavoenzyme involved in polyamine back-conversion (PubMed:16331971, Ref.4). Catalyzes the oxidation of the secondary amino group of polyamines, such as spermine, spermidine and their acetyl derivatives (PubMed:16331971, Ref.4). Plays an important role in the regulation of polyamine intracellular concentration (Probable).[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPolyamine oxidase (PAO) carries out the FAD-dependent oxidation of the secondary amino groups of spermidine and spermine, a key reaction in the polyamine catabolism. The active site of PAO consists of a 30 A long U-shaped catalytic tunnel, whose innermost part is located in front of the flavin ring. To provide insight into the PAO substrate specificity and amine oxidation mechanism, we have investigated the crystal structure of maize PAO in the reduced state and in complex with three different inhibitors, guazatine, 1,8-diaminooctane, and N(1)-ethyl-N(11)-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm). In the reduced state, the conformation of the isoalloxazine ring and the surrounding residues is identical to that of the oxidized enzyme. Only Lys300 moves away from the flavin to compensate for the change in cofactor protonation occurring upon reduction. The structure of the PAO.inhibitor complexes reveals an exact match between the inhibitors and the PAO catalytic tunnel. Inhibitor binding does not involve any protein conformational change. Such lock-and-key binding occurs also in the complex with CHENSpm, which forms a covalent adduct with the flavin N5 atom. Comparison of the enzyme complexes hints at an "out-of-register" mechanism of inhibition, in which the inhibitor secondary amino groups are not properly aligned with respect to the flavin to allow oxidation. Except for the Glu62-Glu170 pair, no negatively charged residues are involved in the recognition of substrate and inhibitor amino groups, which is in contrast to other polyamine binding proteins. This feature may be exploited in the design of drugs specifically targeting PAO. Structural bases for inhibitor binding and catalysis in polyamine oxidase.,Binda C, Angelini R, Federico R, Ascenzi P, Mattevi A Biochemistry. 2001 Mar 6;40(9):2766-76. PMID:11258887[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|