2b3q: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='2b3q' size='340' side='right'caption='[[2b3q]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='2b3q' size='340' side='right'caption='[[2b3q]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2b3q]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B3Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B3Q FirstGlance]. <br>
<table><tr><td colspan='2'>[[2b3q]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B3Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B3Q FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ema|1ema]], [[2b3p|2b3p]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gft ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b3q OCA], [https://pdbe.org/2b3q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b3q RCSB], [https://www.ebi.ac.uk/pdbsum/2b3q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b3q ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b3q OCA], [https://pdbe.org/2b3q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b3q RCSB], [https://www.ebi.ac.uk/pdbsum/2b3q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b3q ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.  
[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 38: Line 36:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aeqvi]]
[[Category: Aequorea victoria]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Cabantous, S]]
[[Category: Cabantous S]]
[[Category: Pedelacq, J D]]
[[Category: Pedelacq JD]]
[[Category: Terwilliger, T C]]
[[Category: Terwilliger TC]]
[[Category: Tran, T H]]
[[Category: Tran TH]]
[[Category: Waldo, G S]]
[[Category: Waldo GS]]
[[Category: 11-stranded beta-barrel]]
[[Category: Luminescent protein]]

Latest revision as of 10:33, 23 August 2023

Crystal structure of a well-folded variant of green fluorescent proteinCrystal structure of a well-folded variant of green fluorescent protein

Structural highlights

2b3q is a 4 chain structure with sequence from Aequorea victoria. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP.

Engineering and characterization of a superfolder green fluorescent protein.,Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS Nat Biotechnol. 2006 Jan;24(1):79-88. Epub 2005 Dec 20. PMID:16369541[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2006 Jan;24(1):79-88. Epub 2005 Dec 20. PMID:16369541 doi:10.1038/nbt1172

2b3q, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA