2b2x: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='2b2x' size='340' side='right'caption='[[2b2x]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='2b2x' size='340' side='right'caption='[[2b2x]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2b2x]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat] and [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B2X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B2X FirstGlance]. <br>
<table><tr><td colspan='2'>[[2b2x]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B2X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B2X FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1mhp|1mhp]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Itga1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b2x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b2x OCA], [https://pdbe.org/2b2x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b2x RCSB], [https://www.ebi.ac.uk/pdbsum/2b2x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b2x ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b2x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b2x OCA], [https://pdbe.org/2b2x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b2x RCSB], [https://www.ebi.ac.uk/pdbsum/2b2x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b2x ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/ITA1_RAT ITA1_RAT]] Integrin alpha-1/beta-1 is a receptor for laminin and collagen. It recognizes the proline-hydroxylated sequence G-F-P-G-E-R in collagen.  
[https://www.uniprot.org/uniprot/ITA1_RAT ITA1_RAT] Integrin alpha-1/beta-1 is a receptor for laminin and collagen. It recognizes the proline-hydroxylated sequence G-F-P-G-E-R in collagen.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 39: Line 38:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Buffalo rat]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Lk3 transgenic mice]]
[[Category: Mus musculus]]
[[Category: Boriack-Sjodin, P A]]
[[Category: Rattus norvegicus]]
[[Category: Clark, L A]]
[[Category: Boriack-Sjodin PA]]
[[Category: Eldredge, J]]
[[Category: Clark LA]]
[[Category: Fitch, C]]
[[Category: Eldredge J]]
[[Category: Friedman, B]]
[[Category: Fitch C]]
[[Category: Hanf, K J]]
[[Category: Friedman B]]
[[Category: Jarpe, M]]
[[Category: Hanf KJ]]
[[Category: Li, Y]]
[[Category: Jarpe M]]
[[Category: Liparoto, S F]]
[[Category: Li Y]]
[[Category: Lugovskoy, A]]
[[Category: Liparoto SF]]
[[Category: Antibody-antigen complex]]
[[Category: Lugovskoy A]]
[[Category: Computational design]]
[[Category: Immune system]]

Latest revision as of 10:33, 23 August 2023

VLA1 RdeltaH I-domain complexed with a quadruple mutant of the AQC2 FabVLA1 RdeltaH I-domain complexed with a quadruple mutant of the AQC2 Fab

Structural highlights

2b2x is a 6 chain structure with sequence from Mus musculus and Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ITA1_RAT Integrin alpha-1/beta-1 is a receptor for laminin and collagen. It recognizes the proline-hydroxylated sequence G-F-P-G-E-R in collagen.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies.

Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design.,Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H Protein Sci. 2006 May;15(5):949-60. Epub 2006 Apr 5. PMID:16597831[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci. 2006 May;15(5):949-60. Epub 2006 Apr 5. PMID:16597831 doi:10.1110/ps.052030506

2b2x, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA