1l3e: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==NMR Structures of the HIF-1alpha CTAD/p300 CH1 Complex== | ==NMR Structures of the HIF-1alpha CTAD/p300 CH1 Complex== | ||
<StructureSection load='1l3e' size='340' side='right'caption='[[1l3e | <StructureSection load='1l3e' size='340' side='right'caption='[[1l3e]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1l3e]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1l3e]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L3E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1L3E FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1l3e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1l3e OCA], [https://pdbe.org/1l3e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1l3e RCSB], [https://www.ebi.ac.uk/pdbsum/1l3e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1l3e ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/HIF1A_HUMAN HIF1A_HUMAN] Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires recruitment of transcriptional coactivators such as CREBPB and EP300. Activity is enhanced by interaction with both, NCOA1 or NCOA2. Interaction with redox regulatory protein APEX seems to activate CTAD and potentiates activation by NCOA1 and CREBBP. Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia.<ref>PMID:9887100</ref> <ref>PMID:11566883</ref> <ref>PMID:11292861</ref> <ref>PMID:15465032</ref> <ref>PMID:16543236</ref> <ref>PMID:16973622</ref> <ref>PMID:17610843</ref> <ref>PMID:19528298</ref> <ref>PMID:20624928</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 22: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l3e ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l3e ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
==See Also== | ==See Also== | ||
*[[Factor inhibiting HIF|Factor inhibiting HIF]] | *[[Factor inhibiting HIF|Factor inhibiting HIF]] | ||
*[[3D structures of hypoxia-inducible factor|3D structures of hypoxia-inducible factor]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Eck | [[Category: Eck MJ]] | ||
[[Category: Freedman | [[Category: Freedman SJ]] | ||
[[Category: Kung | [[Category: Kung AL]] | ||
[[Category: Livingston | [[Category: Livingston DM]] | ||
[[Category: Poy | [[Category: Poy F]] | ||
[[Category: Sun | [[Category: Sun ZJ]] | ||
[[Category: Wagner | [[Category: Wagner G]] | ||
Latest revision as of 11:05, 3 April 2024
NMR Structures of the HIF-1alpha CTAD/p300 CH1 ComplexNMR Structures of the HIF-1alpha CTAD/p300 CH1 Complex
Structural highlights
FunctionHIF1A_HUMAN Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires recruitment of transcriptional coactivators such as CREBPB and EP300. Activity is enhanced by interaction with both, NCOA1 or NCOA2. Interaction with redox regulatory protein APEX seems to activate CTAD and potentiates activation by NCOA1 and CREBBP. Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia.[1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|