6ag5: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6ag5' size='340' side='right'caption='[[6ag5]], [[Resolution|resolution]] 2.32Å' scene=''> | <StructureSection load='6ag5' size='340' side='right'caption='[[6ag5]], [[Resolution|resolution]] 2.32Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6ag5]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[6ag5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AG5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6AG5 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.32Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ag5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ag5 OCA], [https://pdbe.org/6ag5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ag5 RCSB], [https://www.ebi.ac.uk/pdbsum/6ag5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ag5 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/NAT_SACS2 NAT_SACS2] Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).<ref>PMID:17511810</ref> <ref>PMID:23959863</ref> <ref>PMID:25728374</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 22: | Line 24: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharolobus solfataricus P2]] | ||
[[Category: Chang | [[Category: Chang YY]] | ||
[[Category: Hsu | [[Category: Hsu CH]] | ||
Latest revision as of 12:30, 22 November 2023
Crystal structure of Ard1 N-terminal acetyltransferase E88H/H127E mutant from Sulfolobus solfataricusCrystal structure of Ard1 N-terminal acetyltransferase E88H/H127E mutant from Sulfolobus solfataricus
Structural highlights
FunctionNAT_SACS2 Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).[1] [2] [3] Publication Abstract from PubMedThe common mechanism of N-acetyltransferases (NATs) is a water-mediated catalysis, which is not conducive to thermophilic acetyltransferases. The crystal structure of SsArd1 shows an ordered catalytic water molecule in a trap formed by the residues H88 and E127. Structure-guided mutagenesis, kinetic studies and MD simulation indicated that the turnover rates of H88A, E127A and H88A/E127A mutants were low, but that of the H88E/E127H mutant could be restored to the level of the wild type. Adaptation of thermophilic acetyltransferase to a water-mediated catalytic mechanism.,Chang YY, Hagawa S, Hsu CH Chem Commun (Camb). 2020 Sep 10;56(72):10537-10540. doi: 10.1039/d0cc04305b. PMID:32780067[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|