7c8d: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Cryo-EM structure of cat ACE2 and SARS-CoV-2 RBD== | |||
<StructureSection load='7c8d' size='340' side='right'caption='[[7c8d]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7c8d]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Felis_catus Felis catus] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7C8D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7C8D FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7c8d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7c8d OCA], [https://pdbe.org/7c8d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7c8d RCSB], [https://www.ebi.ac.uk/pdbsum/7c8d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7c8d ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ACE2_FELCA ACE2_FELCA] Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II. Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin. Also cleaves other biological peptides, such as apelins, casomorphins and dynorphin A. Plays an important role in amino acid transport by acting as binding partner of amino acid transporter SLC6A19 in intestine, regulating trafficking, expression on the cell surface, and its catalytic activity.[UniProtKB:Q9BYF1] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the recent pandemic COVID-19, is reported to have originated from bats, with its intermediate host unknown to date. Here, we screened 26 animal counterparts of the human ACE2 (hACE2), the receptor for SARS-CoV-2 and SARS-CoV, and found that the ACE2s from various species, including pets, domestic animals and multiple wild animals, could bind to SARS-CoV-2 receptor binding domain (RBD) and facilitate the transduction of SARS-CoV-2 pseudovirus. Comparing to SARS-CoV-2, SARS-CoV seems to have a slightly wider range in choosing its receptor. We further resolved the cryo-electron microscopy (cryo-EM) structure of the cat ACE2 (cACE2) in complex with the SARS-CoV-2 RBD at a resolution of 3 A, revealing similar binding mode as hACE2 to the SARS-CoV-2 RBD. These results shed light on pursuing the intermediate host of SARS-CoV-2 and highlight the necessity of monitoring susceptible hosts to prevent further outbreaks. | |||
Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2.,Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, Hu Y, Meng Y, Pan X, Qiao C, Tian S, Du P, Song H, Shi W, Qi J, Wang HW, Yan J, Gao GF, Wang Q Cell Discov. 2020 Sep 29;6:68. doi: 10.1038/s41421-020-00210-9. eCollection 2020. PMID:33020722<ref>PMID:33020722</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7c8d" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Angiotensin-Converting Enzyme 3D structures|Angiotensin-Converting Enzyme 3D structures]] | |||
*[[Spike protein 3D structures|Spike protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Felis catus]] | |||
[[Category: Large Structures]] | |||
[[Category: Severe acute respiratory syndrome coronavirus 2]] | |||
[[Category: Gao GF]] | |||
[[Category: Wang QH]] | |||
[[Category: Wu Ll]] |
Latest revision as of 09:10, 21 November 2024
Cryo-EM structure of cat ACE2 and SARS-CoV-2 RBDCryo-EM structure of cat ACE2 and SARS-CoV-2 RBD
Structural highlights
FunctionACE2_FELCA Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II. Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin. Also cleaves other biological peptides, such as apelins, casomorphins and dynorphin A. Plays an important role in amino acid transport by acting as binding partner of amino acid transporter SLC6A19 in intestine, regulating trafficking, expression on the cell surface, and its catalytic activity.[UniProtKB:Q9BYF1] Publication Abstract from PubMedSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the recent pandemic COVID-19, is reported to have originated from bats, with its intermediate host unknown to date. Here, we screened 26 animal counterparts of the human ACE2 (hACE2), the receptor for SARS-CoV-2 and SARS-CoV, and found that the ACE2s from various species, including pets, domestic animals and multiple wild animals, could bind to SARS-CoV-2 receptor binding domain (RBD) and facilitate the transduction of SARS-CoV-2 pseudovirus. Comparing to SARS-CoV-2, SARS-CoV seems to have a slightly wider range in choosing its receptor. We further resolved the cryo-electron microscopy (cryo-EM) structure of the cat ACE2 (cACE2) in complex with the SARS-CoV-2 RBD at a resolution of 3 A, revealing similar binding mode as hACE2 to the SARS-CoV-2 RBD. These results shed light on pursuing the intermediate host of SARS-CoV-2 and highlight the necessity of monitoring susceptible hosts to prevent further outbreaks. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2.,Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, Hu Y, Meng Y, Pan X, Qiao C, Tian S, Du P, Song H, Shi W, Qi J, Wang HW, Yan J, Gao GF, Wang Q Cell Discov. 2020 Sep 29;6:68. doi: 10.1038/s41421-020-00210-9. eCollection 2020. PMID:33020722[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|