6sr2: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 37 fs time delay== | ==X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 37 fs time delay== | ||
<StructureSection load='6sr2' size='340' side='right'caption='[[6sr2]]' scene=''> | <StructureSection load='6sr2' size='340' side='right'caption='[[6sr2]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SR2 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[6sr2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SR2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6SR2 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=DO3:10-((2R)-2-HYDROXYPROPYL)-1,4,7,10-TETRAAZACYCLODODECANE+1,4,7-TRIACETIC+ACID'>DO3</scene>, <scene name='pdbligand=GD:GADOLINIUM+ATOM'>GD</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6sr2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6sr2 OCA], [https://pdbe.org/6sr2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6sr2 RCSB], [https://www.ebi.ac.uk/pdbsum/6sr2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6sr2 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter's correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. | |||
Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses.,Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I Nat Commun. 2020 Apr 14;11(1):1814. doi: 10.1038/s41467-020-15610-4. PMID:32286284<ref>PMID:32286284</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6sr2" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Lysozyme 3D structures|Lysozyme 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Gallus gallus]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Gorel A]] | [[Category: Gorel A]] | ||
[[Category: Kloos M]] | [[Category: Kloos M]] | ||
[[Category: Nass K]] | [[Category: Nass K]] |
Latest revision as of 15:46, 24 January 2024
X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 37 fs time delayX-ray pump X-ray probe on lysozyme.Gd nanocrystals: 37 fs time delay
Structural highlights
FunctionLYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1] Publication Abstract from PubMedX-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter's correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses.,Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I Nat Commun. 2020 Apr 14;11(1):1814. doi: 10.1038/s41467-020-15610-4. PMID:32286284[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|