6xxh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Crystal Structure of Human Deoxyhypusine Synthase in apo form==
==Crystal Structure of Human Deoxyhypusine Synthase in apo form==
<StructureSection load='6xxh' size='340' side='right'caption='[[6xxh]]' scene=''>
<StructureSection load='6xxh' size='340' side='right'caption='[[6xxh]], [[Resolution|resolution]] 1.52&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6XXH OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6XXH FirstGlance]. <br>
<table><tr><td colspan='2'>[[6xxh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6XXH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6XXH FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6xxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6xxh OCA], [http://pdbe.org/6xxh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6xxh RCSB], [http://www.ebi.ac.uk/pdbsum/6xxh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6xxh ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.52&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene>, <scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene>, <scene name='pdbligand=OXM:OXAMIC+ACID'>OXM</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6xxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6xxh OCA], [https://pdbe.org/6xxh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6xxh RCSB], [https://www.ebi.ac.uk/pdbsum/6xxh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6xxh ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/DHYS_HUMAN DHYS_HUMAN] Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a specific lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Deoxyhypusine synthase (DHS) is a transferase enabling the formation of deoxyhypusine, which is the first, rate-limiting step of a unique post-translational modification: hypusination. DHS catalyses the transfer of a 4-aminobutyl moiety of polyamine spermidine to a specific lysine of eukaryotic translation factor 5A (eIF5A) precursor in a nicotinamide adenine dinucleotide (NAD)-dependent manner. This modification occurs exclusively on one protein, eIF5A, and it is essential for cell proliferation. Malfunctions of the hypusination pathway, including those caused by mutations within the DHS encoding gene, are associated with conditions such as cancer or neurodegeneration. Here, we present a series of high-resolution crystal structures of human DHS. Structures were determined as the apoprotein, as well as ligand-bound states at high-resolutions ranging from 1.41 to 1.69 A. By solving DHS in complex with its natural substrate spermidine (SPD), we identified the mode of substrate recognition. We also observed that other polyamines, namely spermine (SPM) and putrescine, bind DHS in a similar manner as SPD. Moreover, we performed activity assays showing that SPM could to some extent serve as an alternative DHS substrate. In contrast to previous studies, we demonstrate that no conformational changes occur in the DHS structure upon spermidine-binding. By combining mutagenesis and a light-scattering approach, we show that a conserved "ball-and-chain" motif is indispensable to assembling a functional DHS tetramer. Our study substantially advances our knowledge of the substrate recognition mechanism by DHS and may aid the design of pharmacological compounds for potential applications in cancer therapy.
Half Way to Hypusine-Structural Basis for Substrate Recognition by Human Deoxyhypusine Synthase.,Wator E, Wilk P, Grudnik P Biomolecules. 2020 Mar 30;10(4). pii: biom10040522. doi: 10.3390/biom10040522. PMID:32235505<ref>PMID:32235505</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6xxh" style="background-color:#fffaf0;"></div>
==See Also==
*[[Deoxyhypusine synthase|Deoxyhypusine synthase]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Grudnik P]]
[[Category: Grudnik P]]
[[Category: Wator E]]
[[Category: Wator E]]
[[Category: Wilk P]]
[[Category: Wilk P]]

Latest revision as of 16:14, 24 January 2024

Crystal Structure of Human Deoxyhypusine Synthase in apo formCrystal Structure of Human Deoxyhypusine Synthase in apo form

Structural highlights

6xxh is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.52Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DHYS_HUMAN Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a specific lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue.

Publication Abstract from PubMed

Deoxyhypusine synthase (DHS) is a transferase enabling the formation of deoxyhypusine, which is the first, rate-limiting step of a unique post-translational modification: hypusination. DHS catalyses the transfer of a 4-aminobutyl moiety of polyamine spermidine to a specific lysine of eukaryotic translation factor 5A (eIF5A) precursor in a nicotinamide adenine dinucleotide (NAD)-dependent manner. This modification occurs exclusively on one protein, eIF5A, and it is essential for cell proliferation. Malfunctions of the hypusination pathway, including those caused by mutations within the DHS encoding gene, are associated with conditions such as cancer or neurodegeneration. Here, we present a series of high-resolution crystal structures of human DHS. Structures were determined as the apoprotein, as well as ligand-bound states at high-resolutions ranging from 1.41 to 1.69 A. By solving DHS in complex with its natural substrate spermidine (SPD), we identified the mode of substrate recognition. We also observed that other polyamines, namely spermine (SPM) and putrescine, bind DHS in a similar manner as SPD. Moreover, we performed activity assays showing that SPM could to some extent serve as an alternative DHS substrate. In contrast to previous studies, we demonstrate that no conformational changes occur in the DHS structure upon spermidine-binding. By combining mutagenesis and a light-scattering approach, we show that a conserved "ball-and-chain" motif is indispensable to assembling a functional DHS tetramer. Our study substantially advances our knowledge of the substrate recognition mechanism by DHS and may aid the design of pharmacological compounds for potential applications in cancer therapy.

Half Way to Hypusine-Structural Basis for Substrate Recognition by Human Deoxyhypusine Synthase.,Wator E, Wilk P, Grudnik P Biomolecules. 2020 Mar 30;10(4). pii: biom10040522. doi: 10.3390/biom10040522. PMID:32235505[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wator E, Wilk P, Grudnik P. Half Way to Hypusine-Structural Basis for Substrate Recognition by Human Deoxyhypusine Synthase. Biomolecules. 2020 Mar 30;10(4). pii: biom10040522. doi: 10.3390/biom10040522. PMID:32235505 doi:http://dx.doi.org/10.3390/biom10040522

6xxh, resolution 1.52Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA