1ya5: Difference between revisions

No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='1ya5' size='340' side='right'caption='[[1ya5]], [[Resolution|resolution]] 2.44&Aring;' scene=''>
<StructureSection load='1ya5' size='340' side='right'caption='[[1ya5]], [[Resolution|resolution]] 2.44&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ya5]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. The May 2015 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Titin''  by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2015_5 10.2210/rcsb_pdb/mom_2015_5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YA5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1YA5 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ya5]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The May 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Titin''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_5 10.2210/rcsb_pdb/mom_2015_5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YA5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YA5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.445&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ya5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ya5 OCA], [http://pdbe.org/1ya5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ya5 RCSB], [http://www.ebi.ac.uk/pdbsum/1ya5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ya5 ProSAT]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ya5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ya5 OCA], [https://pdbe.org/1ya5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ya5 RCSB], [https://www.ebi.ac.uk/pdbsum/1ya5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ya5 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN]] Defects in TTN are the cause of hereditary myopathy with early respiratory failure (HMERF) [MIM:[http://omim.org/entry/603689 603689]]; also known as Edstrom myopathy. HMERF is an autosomal dominant, adult-onset myopathy with early respiratory muscle involvement.<ref>PMID:15802564</ref>  Defects in TTN are the cause of familial hypertrophic cardiomyopathy type 9 (CMH9) [MIM:[http://omim.org/entry/613765 613765]]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:10462489</ref>  Defects in TTN are the cause of cardiomyopathy dilated type 1G (CMD1G) [MIM:[http://omim.org/entry/604145 604145]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11846417</ref> <ref>PMID:11788824</ref> <ref>PMID:16465475</ref>  Defects in TTN are the cause of tardive tibial muscular dystrophy (TMD) [MIM:[http://omim.org/entry/600334 600334]]; also known as Udd myopathy. TMD is an autosomal dominant, late-onset distal myopathy. Muscle weakness and atrophy are usually confined to the anterior compartment of the lower leg, in particular the tibialis anterior muscle. Clinical symptoms usually occur at age 35-45 years or much later.<ref>PMID:12145747</ref> <ref>PMID:12891679</ref>  Defects in TTN are the cause of limb-girdle muscular dystrophy type 2J (LGMD2J) [MIM:[http://omim.org/entry/608807 608807]]. LGMD2J is an autosomal recessive degenerative myopathy characterized by progressive weakness of the pelvic and shoulder girdle muscles. Severe disability is observed within 20 years of onset.  Defects in TTN are the cause of early-onset myopathy with fatal cardiomyopathy (EOMFC) [MIM:[http://omim.org/entry/611705 611705]]. Early-onset myopathies are inherited muscle disorders that manifest typically from birth or infancy with hypotonia, muscle weakness, and delayed motor development. EOMFC is a titinopathy that, in contrast with the previously described examples, involves both heart and skeletal muscle, has a congenital onset, and is purely recessive. This phenotype is due to homozygous out-of-frame TTN deletions, which lead to a total absence of titin's C-terminal end from striated muscles and to secondary CAPN3 depletion.<ref>PMID:17444505</ref> [[http://www.uniprot.org/uniprot/TELT_HUMAN TELT_HUMAN]] Defects in TCAP are a cause of familial hypertrophic cardiomyopathy (CMH) [MIM:[http://omim.org/entry/192600 192600]]; also designated FHC or HCM. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:15582318</ref>  Defects in TCAP are a cause of limb-girdle muscular dystrophy type 2G (LGMD2G) [MIM:[http://omim.org/entry/601954 601954]]. LGMD2G is an autosomal recessive degenerative myopathy characterized by proximal and distal muscle weakness and atrophy in the limbs, dystrophic changes on muscle biopsy, and absence of telethonin. Cardiac muscle is involved in a subset of patients.<ref>PMID:10655062</ref>  Defects in TCAP are the cause of cardiomyopathy dilated type 1N (CMD1N) [MIM:[http://omim.org/entry/607487 607487]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15582318</ref> <ref>PMID:12507422</ref> <ref>PMID:16352453</ref> 
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Defects in TTN are the cause of hereditary myopathy with early respiratory failure (HMERF) [MIM:[https://omim.org/entry/603689 603689]; also known as Edstrom myopathy. HMERF is an autosomal dominant, adult-onset myopathy with early respiratory muscle involvement.<ref>PMID:15802564</ref>  Defects in TTN are the cause of familial hypertrophic cardiomyopathy type 9 (CMH9) [MIM:[https://omim.org/entry/613765 613765]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:10462489</ref>  Defects in TTN are the cause of cardiomyopathy dilated type 1G (CMD1G) [MIM:[https://omim.org/entry/604145 604145]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11846417</ref> <ref>PMID:11788824</ref> <ref>PMID:16465475</ref>  Defects in TTN are the cause of tardive tibial muscular dystrophy (TMD) [MIM:[https://omim.org/entry/600334 600334]; also known as Udd myopathy. TMD is an autosomal dominant, late-onset distal myopathy. Muscle weakness and atrophy are usually confined to the anterior compartment of the lower leg, in particular the tibialis anterior muscle. Clinical symptoms usually occur at age 35-45 years or much later.<ref>PMID:12145747</ref> <ref>PMID:12891679</ref>  Defects in TTN are the cause of limb-girdle muscular dystrophy type 2J (LGMD2J) [MIM:[https://omim.org/entry/608807 608807]. LGMD2J is an autosomal recessive degenerative myopathy characterized by progressive weakness of the pelvic and shoulder girdle muscles. Severe disability is observed within 20 years of onset.  Defects in TTN are the cause of early-onset myopathy with fatal cardiomyopathy (EOMFC) [MIM:[https://omim.org/entry/611705 611705]. Early-onset myopathies are inherited muscle disorders that manifest typically from birth or infancy with hypotonia, muscle weakness, and delayed motor development. EOMFC is a titinopathy that, in contrast with the previously described examples, involves both heart and skeletal muscle, has a congenital onset, and is purely recessive. This phenotype is due to homozygous out-of-frame TTN deletions, which lead to a total absence of titin's C-terminal end from striated muscles and to secondary CAPN3 depletion.<ref>PMID:17444505</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN]] Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase.<ref>PMID:9804419</ref> [[http://www.uniprot.org/uniprot/TELT_HUMAN TELT_HUMAN]] Muscle assembly regulating factor. Mediates the antiparallel assembly of titin (TTN) molecules at the sarcomeric Z-disk.
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase.<ref>PMID:9804419</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ya5 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ya5 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Z-disk of striated and cardiac muscle sarcomeres is one of the most densely packed cellular structures in eukaryotic cells. It provides the architectural framework for assembling and anchoring the largest known muscle filament systems by an extensive network of protein-protein interactions, requiring an extraordinary level of mechanical stability. Here we show, using X-ray crystallography, how the amino terminus of the longest filament component, the giant muscle protein titin, is assembled into an antiparallel (2:1) sandwich complex by the Z-disk ligand telethonin. The pseudosymmetric structure of telethonin mediates a unique palindromic arrangement of two titin filaments, a type of molecular assembly previously found only in protein-DNA complexes. We have confirmed its unique architecture in vivo by protein complementation assays, and in vitro by experiments using fluorescence resonance energy transfer. The model proposed may provide a molecular paradigm of how major sarcomeric filaments are crosslinked, anchored and aligned within complex cytoskeletal networks.
Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk.,Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, Mayans OM, Gautel M, Wilmanns M Nature. 2006 Jan 12;439(7073):229-33. PMID:16407954<ref>PMID:16407954</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ya5" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Telethonin|Telethonin]]
*[[Telethonin|Telethonin]]
*[[Titin|Titin]]
*[[Titin|Titin]]
*[[Titin 3D structures|Titin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Titin]]
[[Category: Titin]]
[[Category: Pinotsis, N]]
[[Category: Pinotsis N]]
[[Category: Popov, A]]
[[Category: Popov A]]
[[Category: Wilmanns, M]]
[[Category: Wilmanns M]]
[[Category: Zou, P]]
[[Category: Zou P]]
[[Category: Ig-like domain]]
[[Category: Structural protein]]
[[Category: T-cap]]
[[Category: Telethonin]]
[[Category: Z1]]
[[Category: Z2]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA