6cel: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:6cel.gif|left|200px]]<br />
<applet load="6cel" size="450" color="white" frame="true" align="right" spinBox="true"
caption="6cel, resolution 1.7&Aring;" />
'''CBH1 (E212Q) CELLOPENTAOSE COMPLEX'''<br />


==Overview==
==CBH1 (E212Q) CELLOPENTAOSE COMPLEX==
Detailed information has been obtained, by means of protein X-ray, crystallography, on how a cellulose chain is bound in the, cellulose-binding tunnel of cellobiohydrolase I (CBHI), the major, cellulase in the hydrolysis of native, crystalline cellulose by the fungus, Trichoderma reesei. Three high-resolution crystal structures of different, catalytically deficient mutants of CBHI in complex with cellotetraose, cellopentaose and cellohexaose have been refined at 1.9, 1.7 and 1.9 A, resolution, respectively. The observed binding of cellooligomers in the, tunnel allowed unambiguous identification of ten well-defined subsites for, glucosyl units that span a length of approximately 50 A. All bound, oligomers have the same directionality and orientation, and the positions, of the glucosyl units in each binding site agree remarkably well between, the different complexes. The binding mode observed here corresponds to, that expected during productive binding of a cellulose chain. The, structures support the hypothesis that hydrolysis by CBHI proceeds from, the reducing towards the non-reducing end of a cellulose chain, and they, provide a structural explanation for the observed distribution of initial, hydrolysis products.
<StructureSection load='6cel' size='340' side='right'caption='[[6cel]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6cel]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CEL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CEL FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=PRD_900011:beta-cellotetraose'>PRD_900011</scene>, <scene name='pdbligand=PRD_900016:beta-cellopentaose'>PRD_900016</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cel FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cel OCA], [https://pdbe.org/6cel PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cel RCSB], [https://www.ebi.ac.uk/pdbsum/6cel PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cel ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GUX1_HYPJE GUX1_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ce/6cel_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=6cel ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Detailed information has been obtained, by means of protein X-ray crystallography, on how a cellulose chain is bound in the cellulose-binding tunnel of cellobiohydrolase I (CBHI), the major cellulase in the hydrolysis of native, crystalline cellulose by the fungus Trichoderma reesei. Three high-resolution crystal structures of different catalytically deficient mutants of CBHI in complex with cellotetraose, cellopentaose and cellohexaose have been refined at 1.9, 1.7 and 1.9 A resolution, respectively. The observed binding of cellooligomers in the tunnel allowed unambiguous identification of ten well-defined subsites for glucosyl units that span a length of approximately 50 A. All bound oligomers have the same directionality and orientation, and the positions of the glucosyl units in each binding site agree remarkably well between the different complexes. The binding mode observed here corresponds to that expected during productive binding of a cellulose chain. The structures support the hypothesis that hydrolysis by CBHI proceeds from the reducing towards the non-reducing end of a cellulose chain, and they provide a structural explanation for the observed distribution of initial hydrolysis products.


==About this Structure==
High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei.,Divne C, Stahlberg J, Teeri TT, Jones TA J Mol Biol. 1998 Jan 16;275(2):309-25. PMID:9466911<ref>PMID:9466911</ref>
6CEL is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Hypocrea_jecorina Hypocrea jecorina] with NAG and CO as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Cellulose_1,4-beta-cellobiosidase Cellulose 1,4-beta-cellobiosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.91 3.2.1.91] Structure known Active Sites: CAT and COB. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=6CEL OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei., Divne C, Stahlberg J, Teeri TT, Jones TA, J Mol Biol. 1998 Jan 16;275(2):309-25. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=9466911 9466911]
</div>
[[Category: Cellulose 1,4-beta-cellobiosidase]]
<div class="pdbe-citations 6cel" style="background-color:#fffaf0;"></div>
[[Category: Hypocrea jecorina]]
[[Category: Single protein]]
[[Category: Divne, C.]]
[[Category: Jones, T.A.]]
[[Category: Stahlberg, J.]]
[[Category: CO]]
[[Category: NAG]]
[[Category: cellulose degradation]]
[[Category: glycoprotein]]
[[Category: glycosidase]]
[[Category: glycosylated protein]]
[[Category: hydrolase]]


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov  5 18:50:45 2007''
==See Also==
*[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]]
*[[Glucanase 3D structures|Glucanase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Trichoderma reesei]]
[[Category: Divne C]]
[[Category: Jones TA]]
[[Category: Stahlberg J]]

Latest revision as of 12:46, 23 October 2024

CBH1 (E212Q) CELLOPENTAOSE COMPLEXCBH1 (E212Q) CELLOPENTAOSE COMPLEX

Structural highlights

6cel is a 1 chain structure with sequence from Trichoderma reesei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.7Å
Ligands:, , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GUX1_HYPJE The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Detailed information has been obtained, by means of protein X-ray crystallography, on how a cellulose chain is bound in the cellulose-binding tunnel of cellobiohydrolase I (CBHI), the major cellulase in the hydrolysis of native, crystalline cellulose by the fungus Trichoderma reesei. Three high-resolution crystal structures of different catalytically deficient mutants of CBHI in complex with cellotetraose, cellopentaose and cellohexaose have been refined at 1.9, 1.7 and 1.9 A resolution, respectively. The observed binding of cellooligomers in the tunnel allowed unambiguous identification of ten well-defined subsites for glucosyl units that span a length of approximately 50 A. All bound oligomers have the same directionality and orientation, and the positions of the glucosyl units in each binding site agree remarkably well between the different complexes. The binding mode observed here corresponds to that expected during productive binding of a cellulose chain. The structures support the hypothesis that hydrolysis by CBHI proceeds from the reducing towards the non-reducing end of a cellulose chain, and they provide a structural explanation for the observed distribution of initial hydrolysis products.

High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei.,Divne C, Stahlberg J, Teeri TT, Jones TA J Mol Biol. 1998 Jan 16;275(2):309-25. PMID:9466911[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Divne C, Stahlberg J, Teeri TT, Jones TA. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol. 1998 Jan 16;275(2):309-25. PMID:9466911 doi:http://dx.doi.org/10.1006/jmbi.1997.1437

6cel, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA